Esempio n. 1
0
File: cct.py Progetto: uhqinli/luxpy
def xyz_to_cct_HA(xyzw):
    """
    Convert XYZ tristimulus values to correlated color temperature (CCT). 
    
    Args:
        :xyzw: 
            | ndarray of tristimulus values
        
    Returns:
        :cct: 
            | ndarray of correlated color temperatures estimates
    
    References:
        1. `Hernández-Andrés, Javier; Lee, RL; Romero, J (September 20, 1999). 
        Calculating Correlated Color Temperatures Across the Entire Gamut 
        of Daylight and Skylight Chromaticities.
        Applied Optics. 38 (27), 5703–5709. P
        <https://www.osapublishing.org/ao/abstract.cfm?uri=ao-38-27-5703>`_
            
    Notes: 
        According to paper small error from 3000 - 800 000 K, but a test with 
        Planckians showed errors up to 20% around 500 000 K; 
        e>0.05 for T>200 000, e>0.1 for T>300 000, ...
    """
    if len(xyzw.shape)>2:
        raise Exception('xyz_to_cct_HA(): Input xyzw.ndim must be <= 2 !')
        
    out_of_range_code = np.nan
    xe = [0.3366, 0.3356]
    ye = [0.1735, 0.1691]
    A0 = [-949.86315, 36284.48953]
    A1 = [6253.80338, 0.00228]
    t1 = [0.92159, 0.07861]
    A2 = [28.70599, 5.4535*1e-36]
    t2 = [0.20039, 0.01543]
    A3 = [0.00004, 0.0]
    t3 = [0.07125,1.0]
    cct_ranges = np.array([[3000.0,50000.0],[50000.0,800000.0]])
    
    Yxy = xyz_to_Yxy(xyzw)
    CCT = np.ones((1,Yxy.shape[0]))*out_of_range_code
    for i in range(2):
        n = (Yxy[:,1]-xe[i])/(Yxy[:,2]-ye[i])
        CCT_i = np2d(np.array(A0[i] + A1[i]*np.exp(np.divide(-n,t1[i])) + A2[i]*np.exp(np.divide(-n,t2[i])) + A3[i]*np.exp(np.divide(-n,t3[i]))))
        p = (CCT_i >= (1.0-0.05*(i == 0))*cct_ranges[i][0]) & (CCT_i < (1.0+0.05*(i == 0))*cct_ranges[i][1])
        CCT[p] = CCT_i[p]
        p = (CCT_i < (1.0-0.05)*cct_ranges[0][0]) #smaller than smallest valid CCT value
        CCT[p] = -1
   
    if (np.isnan(CCT.sum()) == True) | (np.any(CCT == -1)):
        print("Warning: xyz_to_cct_HA(): one or more CCTs out of range! --> (CCT < 3 kK,  CCT >800 kK) coded as (-1, NaN) 's")
    return CCT.T
Esempio n. 2
0
def xyz_to_cct_search(xyzw,
                      cieobs=_CIEOBS,
                      out='cct',
                      wl=None,
                      accuracy=0.1,
                      upper_cct_max=10.0**20,
                      approx_cct_temp=True):
    """
    Convert XYZ tristimulus values to correlated color temperature (CCT) and 
    Duv(distance above (> 0) or below ( < 0) the Planckian locus) by a 
    brute-force search. 

    | The algorithm uses an approximate cct_temp (HA approx., see xyz_to_cct_HA) 
      as starting point or uses the middle of the allowed cct-range 
      (1e2 K - 1e20 K, higher causes overflow) on a log-scale, then constructs 
      a 4-step section of the blackbody (Planckian) locus on which to find the
      minimum distance to the 1960 uv chromaticity of the test source.

    Args:
        :xyzw: 
            | ndarray of tristimulus values
        :cieobs: 
            | luxpy._CIEOBS, optional
            | CMF set used to calculated xyzw.
        :out: 
            | 'cct' (or 1), optional
            | Determines what to return.
            | Other options: 'duv' (or -1), 'cct,duv'(or 2), "[cct,duv]" (or -2)
        :wl: 
            | None, optional
            | Wavelengths used when calculating Planckian radiators.
        :accuracy: 
            | float, optional
            | Stop brute-force search when cct :accuracy: is reached.
        :upper_cct_max: 
            | 10.0**20, optional
            | Limit brute-force search to this cct.
        :approx_cct_temp: 
            | True, optional
            | If True: use xyz_to_cct_HA() to get a first estimate of cct to 
              speed up search.

    Returns:
        :returns: 
            | ndarray with:
            |    cct: out == 'cct' (or 1)
            |    duv: out == 'duv' (or -1)
            |    cct, duv: out == 'cct,duv' (or 2)
            |    [cct,duv]: out == "[cct,duv]" (or -2) 
    
    Notes:
        This program is more accurate, but slower than xyz_to_cct_ohno!
        Note that cct must be between 1e3 K - 1e20 K 
        (very large cct take a long time!!!)
    """

    xyzw = np2d(xyzw)

    if len(xyzw.shape) > 2:
        raise Exception('xyz_to_cct_search(): Input xyzw.shape must be <= 2 !')

    # get 1960 u,v of test source:
    Yuvt = xyz_to_Yuv(np.squeeze(
        xyzw))  # remove possible 1-dim + convert xyzw to CIE 1976 u',v'
    #axis_of_v3t = len(Yuvt.shape)-1 # axis containing color components
    ut = Yuvt[:, 1, None]  #.take([1],axis = axis_of_v3t) # get CIE 1960 u
    vt = (2 / 3) * Yuvt[:, 2,
                        None]  #.take([2],axis = axis_of_v3t) # get CIE 1960 v

    # Initialize arrays:
    ccts = np.ones((xyzw.shape[0], 1)) * np.nan
    duvs = ccts.copy()

    #calculate preliminary solution(s):
    if (approx_cct_temp == True):
        ccts_est = xyz_to_cct_HA(xyzw)
        procent_estimates = np.array([[3000.0, 100000.0, 0.05],
                                      [100000.0, 200000.0, 0.1],
                                      [200000.0, 300000.0, 0.25],
                                      [300000.0, 400000.0, 0.4],
                                      [400000.0, 600000.0, 0.4],
                                      [600000.0, 800000.0, 0.4],
                                      [800000.0, np.inf, 0.25]])
    else:
        upper_cct = np.array(upper_cct_max)
        lower_cct = np.array(10.0**2)
        cct_scale_fun = lambda x: np.log10(x)
        cct_scale_ifun = lambda x: np.power(10.0, x)
        dT = (cct_scale_fun(upper_cct) - cct_scale_fun(lower_cct)) / 2
        ccttemp = np.array([cct_scale_ifun(cct_scale_fun(lower_cct) + dT)])
        ccts_est = np2d(ccttemp * np.ones((xyzw.shape[0], 1)))
        dT_approx_cct_False = dT.copy()

    # Loop through all ccts:
    for i in range(xyzw.shape[0]):

        #initialize CCT search parameters:
        cct = np.nan
        duv = np.nan
        ccttemp = ccts_est[i].copy()

        # Take care of (-1, NaN)'s from xyz_to_cct_HA signifying (CCT < lower, CCT > upper) bounds:
        approx_cct_temp_temp = approx_cct_temp
        if (approx_cct_temp == True):
            cct_scale_fun = lambda x: x
            cct_scale_ifun = lambda x: x
            if (ccttemp != -1) & (
                    np.isnan(ccttemp) == False
            ):  # within validity range of CCT estimator-function
                for ii in range(procent_estimates.shape[0]):
                    if (ccttemp >=
                        (1.0 - 0.05 *
                         (ii == 0)) * procent_estimates[ii, 0]) & (
                             ccttemp < (1.0 + 0.05 *
                                        (ii == 0)) * procent_estimates[ii, 1]):
                        procent_estimate = procent_estimates[ii, 2]
                        break

                dT = np.multiply(
                    ccttemp, procent_estimate
                )  # determines range around CCTtemp (25% around estimate) or 100 K
            elif (ccttemp == -1) & (np.isnan(ccttemp) == False):
                ccttemp = np.array([procent_estimates[0, 0] / 2])
                procent_estimate = 1  # cover 0 K to min_CCT of estimator
                dT = np.multiply(ccttemp, procent_estimate)
            elif (np.isnan(ccttemp) == True):
                upper_cct = np.array(upper_cct_max)
                lower_cct = np.array(10.0**2)
                cct_scale_fun = lambda x: np.log10(x)
                cct_scale_ifun = lambda x: np.power(10.0, x)
                dT = (cct_scale_fun(upper_cct) - cct_scale_fun(lower_cct)) / 2
                ccttemp = np.array(
                    [cct_scale_ifun(cct_scale_fun(lower_cct) + dT)])
                approx_cct_temp = False
        else:
            dT = dT_approx_cct_False

        nsteps = 3
        signduv = 1.0
        ccttemp = ccttemp[0]
        delta_cct = dT
        while ((delta_cct > accuracy)):  # keep converging on CCT

            #generate range of ccts:
            ccts_i = cct_scale_ifun(
                np.linspace(
                    cct_scale_fun(ccttemp) - dT,
                    cct_scale_fun(ccttemp) + dT, nsteps + 1))

            ccts_i[ccts_i < 100.0] = 100.0  # avoid nan's in calculation

            # Generate BB:
            BB = cri_ref(ccts_i, wl3=wl, ref_type=['BB'], cieobs=cieobs)

            # Calculate xyz:
            xyz = spd_to_xyz(BB, cieobs=cieobs)

            # Convert to CIE 1960 u,v:
            Yuv = xyz_to_Yuv(np.squeeze(
                xyz))  # remove possible 1-dim + convert xyz to CIE 1976 u',v'
            #axis_of_v3 = len(Yuv.shape)-1 # axis containing color components
            u = Yuv[:, 1, None]  # get CIE 1960 u
            v = (2.0 / 3.0) * Yuv[:, 2, None]  # get CIE 1960 v

            # Calculate distance between list of uv's and uv of test source:
            dc = ((ut[i] - u)**2 + (vt[i] - v)**2)**0.5
            if np.isnan(dc.min()) == False:
                #eps = _EPS
                q = dc.argmin()

                if np.size(
                        q
                ) > 1:  #to minimize calculation time: only calculate median when necessary
                    cct = np.median(ccts[q])
                    duv = np.median(dc[q])
                    q = np.median(q)
                    q = int(q)  #must be able to serve as index

                else:
                    cct = ccts_i[q]
                    duv = dc[q]

                if (q == 0):
                    ccttemp = cct_scale_ifun(
                        np.array(cct_scale_fun([cct])) + 2 * dT / nsteps)
                    #dT = 2.0*dT/nsteps
                    continue  # look in higher section of planckian locus

                if (q == np.size(ccts_i)):
                    ccttemp = cct_scale_ifun(
                        np.array(cct_scale_fun([cct])) - 2 * dT / nsteps)
                    #dT = 2.0*dT/nsteps
                    continue  # look in lower section of planckian locus

                if (q > 0) & (q < np.size(ccts_i) - 1):
                    dT = 2 * dT / nsteps
                    # get Duv sign:
                    d_p1m1 = ((u[q + 1] - u[q - 1])**2.0 +
                              (v[q + 1] - v[q - 1])**2.0)**0.5

                    x = (dc[q - 1]**2.0 - dc[q + 1]**2.0 +
                         d_p1m1**2.0) / 2.0 * d_p1m1
                    vBB = v[q - 1] + ((v[q + 1] - v[q - 1]) * (x / d_p1m1))
                    signduv = np.sign(vt[i] - vBB)

                #calculate difference with previous intermediate solution:
                delta_cct = abs(cct - ccttemp)

                ccttemp = np.array(cct)  #%set new intermediate CCT
                approx_cct_temp = approx_cct_temp_temp
            else:
                ccttemp = np.nan
                cct = np.nan
                duv = np.nan

        duvs[i] = signduv * abs(duv)
        ccts[i] = cct

    # Regulate output:
    if (out == 'cct') | (out == 1):
        return np2d(ccts)
    elif (out == 'duv') | (out == -1):
        return np2d(duvs)
    elif (out == 'cct,duv') | (out == 2):
        return np2d(ccts), np2d(duvs)
    elif (out == "[cct,duv]") | (out == -2):
        return np.vstack((ccts, duvs)).T
def cie2006cmfsEx(age = 32,fieldsize = 10, wl = None,\
                  var_od_lens = 0, var_od_macula = 0, \
                  var_od_L = 0, var_od_M = 0, var_od_S = 0,\
                  var_shft_L = 0, var_shft_M = 0, var_shft_S = 0,\
                  out = 'LMS', allow_negative_values = False):
    """
    Generate Individual Observer CMFs (cone fundamentals) 
    based on CIE2006 cone fundamentals and published literature 
    on observer variability in color matching and in physiological parameters.
    
    Args:
        :age: 
            | 32 or float or int, optional
            | Observer age
        :fieldsize:
            | 10, optional
            | Field size of stimulus in degrees (between 2° and 10°).
        :wl: 
            | None, optional
            | Interpolation/extraplation of :LMS: output to specified wavelengths.
            | None: output original _WL = np.array([390,780,5])
        :var_od_lens:
            | 0, optional
            | Std Dev. in peak optical density [%] of lens.
        :var_od_macula:
            | 0, optional
            | Std Dev. in peak optical density [%] of macula.
        :var_od_L:
            | 0, optional
            | Std Dev. in peak optical density [%] of L-cone.
        :var_od_M:
            | 0, optional
            | Std Dev. in peak optical density [%] of M-cone.
        :var_od_S:
            | 0, optional
            | Std Dev. in peak optical density [%] of S-cone.
        :var_shft_L:
            | 0, optional
            | Std Dev. in peak wavelength shift [nm] of L-cone. 
        :var_shft_L:
            | 0, optional
            | Std Dev. in peak wavelength shift [nm] of M-cone.  
        :var_shft_S:
            | 0, optional
            | Std Dev. in peak wavelength shift [nm] of S-cone. 
        :out: 
            | 'LMS' or , optional
            | Determines output.
        :allow_negative_values:
            | False, optional
            | Cone fundamentals or color matching functions 
              should not have negative values.
            |     If False: X[X<0] = 0.
            
    Returns:
        :returns: 
            | - 'LMS' : ndarray with individual observer area-normalized 
            |           cone fundamentals. Wavelength have been added.
                
            | [- 'trans_lens': ndarray with lens transmission 
            |      (no wavelengths added, no interpolation)
            |  - 'trans_macula': ndarray with macula transmission 
            |      (no wavelengths added, no interpolation)
            |  - 'sens_photopig' : ndarray with photopigment sens. 
            |      (no wavelengths added, no interpolation)]
            
    References:
         1. `Asano Y, Fairchild MD, and Blondé L (2016). 
         Individual Colorimetric Observer Model. 
         PLoS One 11, 1–19. 
         <http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0145671>`_
        
         2. `Asano Y, Fairchild MD, Blondé L, and Morvan P (2016). 
         Color matching experiment for highlighting interobserver variability. 
         Color Res. Appl. 41, 530–539. 
         <https://onlinelibrary.wiley.com/doi/abs/10.1002/col.21975>`_
         
         3. `CIE, and CIE (2006). 
         Fundamental Chromaticity Diagram with Physiological Axes - Part I 
         (Vienna: CIE). 
         <http://www.cie.co.at/publications/fundamental-chromaticity-diagram-physiological-axes-part-1>`_ 
         
         4. `Asano's Individual Colorimetric Observer Model 
         <https://www.rit.edu/cos/colorscience/re_AsanoObserverFunctions.php>`_
    """
    fs = fieldsize
    rmd = _INDVCMF_DATA['rmd'].copy()
    LMSa = _INDVCMF_DATA['LMSa'].copy()
    docul = _INDVCMF_DATA['docul'].copy()

    # field size corrected macular density:
    pkOd_Macula = 0.485 * np.exp(-fs / 6.132) * (
        1 + var_od_macula / 100)  # varied peak optical density of macula
    corrected_rmd = rmd * pkOd_Macula

    # age corrected lens/ocular media density:
    if (age <= 60):
        correct_lomd = docul[:1] * (1 + 0.02 * (age - 32)) + docul[1:2]
    else:
        correct_lomd = docul[:1] * (1.56 + 0.0667 * (age - 60)) + docul[1:2]
    correct_lomd = correct_lomd * (1 + var_od_lens / 100
                                   )  # varied overall optical density of lens

    # Peak Wavelength Shift:
    wl_shifted = np.empty(LMSa.shape)
    wl_shifted[0] = _WL + var_shft_L
    wl_shifted[1] = _WL + var_shft_M
    wl_shifted[2] = _WL + var_shft_S

    LMSa_shft = np.empty(LMSa.shape)
    kind = 'cubic'
    LMSa_shft[0] = interpolate.interp1d(wl_shifted[0],
                                        LMSa[0],
                                        kind=kind,
                                        bounds_error=False,
                                        fill_value="extrapolate")(_WL)
    LMSa_shft[1] = interpolate.interp1d(wl_shifted[1],
                                        LMSa[1],
                                        kind=kind,
                                        bounds_error=False,
                                        fill_value="extrapolate")(_WL)
    LMSa_shft[2] = interpolate.interp1d(wl_shifted[2],
                                        LMSa[2],
                                        kind=kind,
                                        bounds_error=False,
                                        fill_value="extrapolate")(_WL)
    #    LMSa[2,np.where(_WL >= _WL_CRIT)] = 0 #np.nan # Not defined above 620nm
    #    LMSa_shft[2,np.where(_WL >= _WL_CRIT)] = 0

    ssw = np.hstack(
        (0, np.sign(np.diff(LMSa_shft[2, :]))
         ))  #detect poor interpolation (sign switch due to instability)
    LMSa_shft[2, np.where((ssw >= 0) & (_WL > 560))] = np.nan

    # corrected LMS (no age correction):
    pkOd_L = (0.38 + 0.54 * np.exp(-fs / 1.333)) * (
        1 + var_od_L / 100)  # varied peak optical density of L-cone
    pkOd_M = (0.38 + 0.54 * np.exp(-fs / 1.333)) * (
        1 + var_od_M / 100)  # varied peak optical density of M-cone
    pkOd_S = (0.30 + 0.45 * np.exp(-fs / 1.333)) * (
        1 + var_od_S / 100)  # varied peak optical density of S-cone

    alpha_lms = 0. * LMSa_shft
    alpha_lms[0] = 1 - 10**(-pkOd_L * (10**LMSa_shft[0]))
    alpha_lms[1] = 1 - 10**(-pkOd_M * (10**LMSa_shft[1]))
    alpha_lms[2] = 1 - 10**(-pkOd_S * (10**LMSa_shft[2]))

    # this fix is required because the above math fails for alpha_lms[2,:]==0
    alpha_lms[2, np.where(_WL >= _WL_CRIT)] = 0

    # Corrected to Corneal Incidence:
    lms_barq = alpha_lms * (10**(-corrected_rmd - correct_lomd)) * np.ones(
        alpha_lms.shape)

    # Corrected to Energy Terms:
    lms_bar = lms_barq * _WL

    # Set NaN values to zero:
    lms_bar[np.isnan(lms_bar)] = 0

    # normalized:
    LMS = 100 * lms_bar / np.nansum(lms_bar, axis=1, keepdims=True)

    # Output extra:
    trans_lens = 10**(-correct_lomd)
    trans_macula = 10**(-corrected_rmd)
    sens_photopig = alpha_lms * _WL

    # Add wavelengths:
    LMS = np.vstack((_WL, LMS))

    if ('xyz' in out.lower().split(',')):
        LMS = lmsb_to_xyzb(LMS,
                           fieldsize,
                           out='xyz',
                           allow_negative_values=allow_negative_values)
        out = out.replace('xyz', 'LMS').replace('XYZ', 'LMS')
    if ('lms' in out.lower().split(',')):
        out = out.replace('lms', 'LMS')

    # Interpolate/extrapolate:
    if wl is None:
        interpolation = None
    else:
        interpolation = 'cubic'
    LMS = spd(LMS, wl=wl, interpolation=interpolation, norm_type='area')

    if (out == 'LMS'):
        return LMS
    elif (out == 'LMS,trans_lens,trans_macula,sens_photopig'):
        return LMS, trans_lens, trans_macula, sens_photopig
    elif (out == 'LMS,trans_lens,trans_macula,sens_photopig,LMSa'):
        return LMS, trans_lens, trans_macula, sens_photopig, LMSa
    else:
        return eval(out)
def xyz_to_rfl(xyz, rfl = None, out = 'rfl_est', \
                 refspd = None, D = None, cieobs = _CIEOBS, \
                 cspace = 'xyz', cspace_tf = {},\
                 interp_type = 'nd', k_neighbours = 4, verbosity = 0):
    """
    Approximate spectral reflectance of xyz based on nd-dimensional linear interpolation 
    or k nearest neighbour interpolation of samples from a standard reflectance set.
    
    Args:
        :xyz: 
            | ndarray with tristimulus values of target points.
        :rfl: 
            | ndarray, optional
            | Reflectance set for color coordinate to rfl mapping.
        :out: 
            | 'rfl_est' or str, optional
        :refspd: 
            | None, optional
            | Refer ence spectrum for color coordinate to rfl mapping.
            | None defaults to D65.
        :cieobs:
            | _CIEOBS, optional
            | CMF set used for calculation of xyz from spectral data.
        :cspace:
            | 'xyz',  optional
            | Color space for color coordinate to rfl mapping.
            | Tip: Use linear space (e.g. 'xyz', 'Yuv',...) for (interp_type == 'nd'),
            |      and perceptually uniform space (e.g. 'ipt') for (interp_type == 'nearest')
        :cspace_tf:
            | {}, optional
            | Dict with parameters for xyz_to_cspace and cspace_to_xyz transform.
        :interp_type:
            | 'nd', optional
            | Options:
            | - 'nd': perform n-dimensional linear interpolation using Delaunay triangulation.
            | - 'nearest': perform nearest neighbour interpolation. 
        :k_neighbours:
            | 4 or int, optional
            | Number of nearest neighbours for reflectance spectrum interpolation.
            | Neighbours are found using scipy.cKDTree
        :verbosity:
            | 0, optional
            | If > 0: make a plot of the color coordinates of original and 
              rendered image pixels.

    Returns:
        :returns: 
            | :rfl_est:
            | ndarrays with estimated reflectance spectra.
    """

    # get rfl set:
    if rfl is None:  # use IESTM30['4880'] set
        rfl = _CRI_RFL['ies-tm30']['4880']['5nm']

    # get Ref spd:
    if refspd is None:
        refspd = _CIE_ILLUMINANTS['D65'].copy()

    # Calculate lab-type coordinates of standard rfl set under refspd:
    xyz_rr, xyz_wr = spd_to_xyz(refspd,
                                relative=True,
                                rfl=rfl,
                                cieobs=cieobs,
                                out=2)
    cspace_tf_copy = cspace_tf.copy()
    cspace_tf_copy['xyzw'] = xyz_wr  # put correct white point in param. dict
    lab_rr = colortf(xyz_rr,
                     tf=cspace,
                     fwtf=cspace_tf_copy,
                     bwtf=cspace_tf_copy)[:, 0, :]

    # Convert xyz to lab-type values under refspd:
    lab = colortf(xyz, tf=cspace, fwtf=cspace_tf_copy, bwtf=cspace_tf_copy)

    if interp_type == 'nearest':
        # Find rfl (cfr. lab_rr) from rfl set that results in 'near' metameric
        # color coordinates for each value in lab_ur (i.e. smallest DE):
        # Construct cKDTree:
        tree = cKDTree(lab_rr, copy_data=True)

        # Interpolate rfls using k nearest neightbours and inverse distance weigthing:
        d, inds = tree.query(lab, k=k_neighbours)
        if k_neighbours > 1:
            d += _EPS
            w = (1.0 / d**2)[:, :, None]  # inverse distance weigthing
            rfl_est = np.sum(w * rfl[inds + 1, :], axis=1) / np.sum(w, axis=1)
        else:
            rfl_est = rfl[inds + 1, :].copy()
    elif interp_type == 'nd':
        rfl_est = math.ndinterp1_scipy(lab_rr, rfl[1:], lab)

        _isnan = np.isnan(rfl_est[:, 0])

        if (
                _isnan.any()
        ):  #do nearest neigbour method for those that fail using Delaunay (i.e. ndinterp1_scipy)

            # Find rfl (cfr. lab_rr) from rfl set that results in 'near' metameric
            # color coordinates for each value in lab_ur (i.e. smallest DE):
            # Construct cKDTree:
            tree = cKDTree(lab_rr, copy_data=True)

            # Interpolate rfls using k nearest neightbours and inverse distance weigthing:
            d, inds = tree.query(lab[_isnan, ...], k=k_neighbours)
            if k_neighbours > 1:
                d += _EPS
                w = (1.0 / d**2)[:, :, None]  # inverse distance weigthing
                rfl_est_isnan = np.sum(w * rfl[inds + 1, :], axis=1) / np.sum(
                    w, axis=1)
            else:
                rfl_est_isnan = rfl[inds + 1, :].copy()
            rfl_est[_isnan, :] = rfl_est_isnan
    else:
        raise Exception('xyz_to_rfl(): unsupported interp_type!')

    rfl_est[
        rfl_est <
        0] = 0  #can occur for points outside convexhull of standard rfl set.

    rfl_est = np.vstack((rfl[0], rfl_est))

    if (verbosity > 0) | ('xyz_est' in out.split(',')) | (
            'lab_est' in out.split(',')) | ('DEi_ab' in out.split(',')) | (
                'DEa_ab' in out.split(',')):
        xyz_est, _ = spd_to_xyz(refspd,
                                rfl=rfl_est,
                                relative=True,
                                cieobs=cieobs,
                                out=2)
        cspace_tf_copy = cspace_tf.copy()
        cspace_tf_copy[
            'xyzw'] = xyz_wr  # put correct white point in param. dict
        lab_est = colortf(xyz_est, tf=cspace, fwtf=cspace_tf_copy)[:, 0, :]
        DEi_ab = np.sqrt(((lab_est[:, 1:3] - lab[:, 1:3])**2).sum(axis=1))
        DEa_ab = DEi_ab.mean()

    if verbosity > 0:
        ax = plot_color_data(lab[...,1], lab[...,2], z = lab[...,0], \
                        show = False, cieobs = cieobs, cspace = cspace, \
                        formatstr = 'ro', label = 'Original')
        plot_color_data(lab_est[...,1], lab_est[...,2], z = lab_est[...,0], \
                        show = True, axh = ax, cieobs = cieobs, cspace = cspace, \
                        formatstr = 'bd', label = 'Rendered')

    if out == 'rfl_est':
        return rfl_est
    elif out == 'rfl_est,xyz_est':
        return rfl_est, xyz_est
    else:
        return eval(out)
Esempio n. 5
0
def PX_colorshift_model(Jabt,
                        Jabr,
                        jab_ranges=None,
                        jab_deltas=None,
                        limit_grid_radius=0):
    """
    Pixelates the color space and calculates the color shifts in each pixel.
    
    Args:
        :Jabt: 
            | ndarray with color coordinates under the (single) test SPD.
        :Jabr: 
            | ndarray with color coordinates under the (single) reference SPD.  
        :jab_ranges:
            | None or ndarray, optional
            | Specifies the pixelization of color space.
            | (ndarray.shape = (3,3), with  first axis: J,a,b, and second 
              axis: min, max, delta)
        :jab_deltas:
            | float or ndarray, optional
            | Specifies the sampling range. 
            | A float uses jab_deltas as the maximum Euclidean distance to select
              samples around each pixel center. A ndarray of 3 deltas, uses
              a city block sampling around each pixel center.
        :limit_grid_radius:
            | 0, optional
            | A value of zeros keeps grid as specified by axr,bxr.
            | A value > 0 only keeps (a,b) coordinates within :limit_grid_radius:
            
    Returns:
        :returns: 
            | dict with the following keys:
            |   - 'Jab': dict with with ndarrays for:
            |        Jabt, Jabr, DEi, DEi_ab (only ab-coordinates), DEa (mean) 
            |         and DEa_ab
            |   - 'vshifts': dict with:
            |      * 'vectorshift': ndarray with vector shifts between average
            |                       Jabt and Jabr for each pixel
            |      * 'vectorshift_ab': ndarray with vector shifts averaged 
            |                          over J for each pixel
            |      * 'vectorshift_ab_J0': ndarray with vector shifts averaged 
            |                             over J for each pixel of J=0 plane.
            |      * 'vectorshift_len': length of 'vectorshift'
            |      * 'vectorshift_ab_len': length of 'vectorshift_ab'
            |      * 'vectorshift_ab_J0_len': length of 'vectorshift_ab_J0'
            |      * 'vectorshift_len_DEnormed': length of 'vectorshift' 
            |                                    normalized to 'DEa'
            |      * 'vectorshift_ab_len_DEnormed': length of 'vectorshift_ab' 
            |                                       normalized to 'DEa_ab'
            |      * 'vectorshift_ab_J0_len_DEnormed': length of 'vectorshift_ab_J0' 
            |                                          normalized to 'DEa_ab'
            |   - 'pixeldata': dict with pixel info:
            |      * 'grid' ndarray with coordinates of all pixel centers.
            |      * 'idx': list[int] with pixel index for each non-empty pixel
            |      * 'Jab': ndarray with center coordinates of non-empty pixels
            |      * 'samplenrs': list[list[int]] with sample numbers belong to 
            |                     each non-empty pixel
            |      * 'IDs: summarizing list, 
            |              with column order: 'idxp, jabp, samplenrs'
            |  - 'fielddata' : dict with dicts containing data on the calculated 
            |                  vector-field and circle-fields 
            |      * 'vectorfield': dict with ndarrays for the ab-coordinates 
            |         under the ref. (axr, bxr) and test (axt, bxt) illuminants,
            |         centered at the pixel centers corresponding to the 
                      ab-coordinates of the reference illuminant.
     """

    # get pixelIDs of all samples under ref. conditions:
    gridp, idxp, jabp, pixelsamplenrs, pixelIDs = get_pixel_coordinates(
        Jabr,
        jab_ranges=jab_ranges,
        jab_deltas=jab_deltas,
        limit_grid_radius=limit_grid_radius)

    # get average Jab coordinates for each pixel:
    Npixels = len(idxp)  # number of non-empty pixels
    Jabr_avg = np.nan * np.ones((gridp.shape[0], 3))
    Jabt_avg = Jabr_avg.copy()
    for i in range(Npixels):
        Jabr_avg[idxp[i], :] = Jabr[pixelsamplenrs[i], :].mean(axis=0)
        Jabt_avg[idxp[i], :] = Jabt[pixelsamplenrs[i], :].mean(axis=0)
        #jabtemp = Jabr[pixelsamplenrs[i],:]
        #jabtempm = Jabr_avg[idxp[i],:]

    # calculate Jab vector shift:
    vectorshift = Jabt_avg - Jabr_avg

    # calculate ab vector shift:
    uabs = gridp[gridp[:, 0] == 0, 1:3]  #np.unique(gridp[:,1:3],axis=0)
    vectorshift_ab_J0 = np.ones((uabs.shape[0], 2)) * np.nan
    vectorshift_ab = np.ones((vectorshift.shape[0], 2)) * np.nan
    for i in range(uabs.shape[0]):
        cond = (gridp[:, 1:3] == uabs[i, :]).all(axis=1)
        if cond.any() & np.logical_not(
                np.isnan(vectorshift[cond, 1:3]).all()
        ):  #last condition is to avoid warning of taking nanmean of empty slice when all are NaNs
            vectorshift_ab_J0[i, :] = np.nanmean(vectorshift[cond, 1:3],
                                                 axis=0)
            vectorshift_ab[cond, :] = np.nanmean(vectorshift[cond, 1:3],
                                                 axis=0)

    # Calculate length of shift vectors:
    vectorshift_len = np.sqrt((vectorshift**2).sum(axis=vectorshift.ndim - 1))
    vectorshift_ab_len = np.sqrt(
        (vectorshift_ab**2).sum(axis=vectorshift_ab.ndim - 1))
    vectorshift_ab_J0_len = np.sqrt(
        (vectorshift_ab_J0**2).sum(axis=vectorshift_ab_J0.ndim - 1))

    # Calculate average DE for normalization of vectorshifts
    DEi_Jab_avg = np.sqrt(((Jabt - Jabr)**2).sum(axis=Jabr.ndim - 1))
    DE_Jab_avg = DEi_Jab_avg.mean(axis=0)
    DEi_ab_avg = np.sqrt(
        ((Jabt[..., 1:3] - Jabr[..., 1:3])**2).sum(axis=Jabr[..., 1:3].ndim -
                                                   1))
    DE_ab_avg = DEi_ab_avg.mean(axis=0)

    # calculate vectorfield:
    axr = uabs[:, 0, None]
    bxr = uabs[:, 1, None]
    axt = axr + vectorshift_ab_J0[:, 0, None]
    bxt = bxr + vectorshift_ab_J0[:, 1, None]

    data = {
        'Jab': {
            'Jabr': Jabr_avg,
            'Jabt': Jabt_avg,
            'DEi': DEi_Jab_avg,
            'DEi_ab': DEi_ab_avg,
            'DEa': DE_Jab_avg,
            'DEa_ab': DE_ab_avg
        },
        'vshifts': {
            'vectorshift': vectorshift,
            'vectorshift_ab': vectorshift_ab,
            'vectorshift_ab_J0': vectorshift_ab_J0,
            'vectorshift_len': vectorshift_len,
            'vectorshift_ab_len': vectorshift_ab_len,
            'vectorshift_ab_J0_len': vectorshift_ab_J0_len,
            'vectorshift_len_DEnormed': vectorshift_len / DE_Jab_avg,
            'vectorshift_ab_len_DEnormed': vectorshift_ab_len / DE_ab_avg,
            'vectorshift_ab_J0_len_DEnormed': vectorshift_ab_J0_len / DE_ab_avg
        },
        'pixeldata': {
            'grid': gridp,
            'idx': idxp,
            'Jab': jabp,
            'samplenrs': pixelsamplenrs,
            'IDs': pixelIDs
        },
        'fielddata': {
            'vectorfield': {
                'axr': axr,
                'bxr': bxr,
                'axt': axt,
                'bxt': bxt
            }
        }
    }
    return data
Esempio n. 6
0
def plot_chromaticity_diagram_colors(diagram_samples = 256, diagram_opacity = 1.0, diagram_lightness = 0.25,\
                                      cieobs = _CIEOBS, cspace = 'Yxy', cspace_pars = {},\
                                      show = True, axh = None,\
                                      show_grid = True, label_fontname = 'Times New Roman', label_fontsize = 12,\
                                      **kwargs):
    """
    Plot the chromaticity diagram colors.
    
    Args:
        :diagram_samples:
            | 256, optional
            | Sampling resolution of color space.
        :diagram_opacity:
            | 1.0, optional
            | Sets opacity of chromaticity diagram
        :diagram_lightness:
            | 0.25, optional
            | Sets lightness of chromaticity diagram
        :axh: 
            | None or axes handle, optional
            | Determines axes to plot data in.
            | None: make new figure.
        :show:
            | True or False, optional
            | Invoke matplotlib.pyplot.show() right after plotting
        :cieobs:
            | luxpy._CIEOBS or str, optional
            | Determines CMF set to calculate spectrum locus or other.
        :cspace:
            | luxpy._CSPACE or str, optional
            | Determines color space / chromaticity diagram to plot data in.
            | Note that data is expected to be in specified :cspace:
        :cspace_pars:
            | {} or dict, optional
            | Dict with parameters required by color space specified in :cspace: 
            | (for use with luxpy.colortf())
        :show_grid:
            | True, optional
            | Show grid (True) or not (False)
        :label_fontname: 
            | 'Times New Roman', optional
            | Sets font type of axis labels.
        :label_fontsize:
            | 12, optional
            | Sets font size of axis labels.
        :kwargs: 
            | additional keyword arguments for use with matplotlib.pyplot.
        
    Returns:
        
    """
    offset = _EPS
    ii, jj = np.meshgrid(np.linspace(offset, 1 + offset, diagram_samples), np.linspace(1+offset, offset, diagram_samples))
    ij = np.dstack((ii, jj))
    
    SL =  _CMF[cieobs]['bar'][1:4].T
    SL = np.vstack((SL,SL[0]))
    SL = 100.0*SL/SL[:,1,None]
    SL = colortf(SL, tf = cspace, tfa0 = cspace_pars)
    Y,x,y = asplit(SL)
    SL = np.vstack((x,y)).T

    
    ij2D = ij.reshape((diagram_samples**2,2))
    ij2D = np.hstack((diagram_lightness*100*np.ones((ij2D.shape[0],1)), ij2D))
    xyz = colortf(ij2D, tf = cspace + '>xyz', tfa0 = cspace_pars)

    xyz[xyz < 0] = 0
    xyz[np.isinf(xyz.sum(axis=1)),:] = np.nan
    xyz[np.isnan(xyz.sum(axis=1)),:] = offset
    
    srgb = xyz_to_srgb(xyz)
    srgb = srgb/srgb.max()
    srgb = srgb.reshape((diagram_samples,diagram_samples,3))

    if show == True:
        if axh is None:
            fig = plt.figure()
            axh = fig.add_subplot(111)
        polygon = Polygon(SL, facecolor='none', edgecolor='none')
        axh.add_patch(polygon)
        image = axh.imshow(
            srgb,
            interpolation='bilinear',
            extent = (0.0, 1, -0.05, 1),
            clip_path=None,
            alpha=diagram_opacity)
        image.set_clip_path(polygon)
        plt.plot(x,y, color = 'darkgray')
        if cspace == 'Yxy':
            plt.xlim([0,1])
            plt.ylim([0,1])
        elif cspace == 'Yuv':
            plt.xlim([0,0.6])
            plt.ylim([0,0.6])
        if (cspace is not None):
            xlabel = _CSPACE_AXES[cspace][1]
            ylabel = _CSPACE_AXES[cspace][2]
            if (label_fontname is not None) & (label_fontsize is not None):
                plt.xlabel(xlabel, fontname = label_fontname, fontsize = label_fontsize)
                plt.ylabel(ylabel, fontname = label_fontname, fontsize = label_fontsize)
                
        if show_grid == True:
            plt.grid()
        #plt.show()
    
        return axh
    else:
        return None