def get_frame_data(nspec=10, objtype=None): """ Return basic test data for lvmspec.frame object: """ nwave = 100 wavemin, wavemax = 4000, 4100 wave, model_flux = get_models(nspec, nwave, wavemin=wavemin, wavemax=wavemax) resol_data = set_resolmatrix(nspec, nwave) calib = np.sin((wave - wavemin) * np.pi / np.max(wave)) flux = np.zeros((nspec, nwave)) for i in range(nspec): flux[i] = Resolution(resol_data[i]).dot(model_flux[i] * calib) sigma = 0.01 # flux += np.random.normal(scale=sigma, size=flux.shape) ivar = np.ones(flux.shape) / sigma**2 mask = np.zeros(flux.shape, dtype=int) fibermap = empty_fibermap(nspec, 1500) if objtype is None: fibermap['OBJTYPE'] = 'QSO' fibermap['OBJTYPE'][0:3] = 'STD' # For flux tests else: fibermap['OBJTYPE'] = objtype frame = Frame(wave, flux, ivar, mask, resol_data, fibermap=fibermap) frame.meta = {} frame.meta['EXPTIME'] = 1. # For flux tests return frame
def test_slice(self): nspec = 5 nwave = 10 wave = np.arange(nwave) flux = np.random.uniform(size=(nspec, nwave)) ivar = np.ones(flux.shape) mask = np.zeros(flux.shape, dtype=int) chi2pix = np.zeros(flux.shape) rdata = np.ones((nspec, 5, nwave)) fibermap = lvmspec.io.fibermap.empty_fibermap(nspec) frame = Frame(wave, flux, ivar, mask, rdata, spectrograph=0) x = frame[1] self.assertEqual(type(x), Spectrum) x = frame[1:2] self.assertEqual(type(x), Frame) x = frame[[1, 2, 3]] self.assertEqual(type(x), Frame) x = frame[frame.fibers < 3] self.assertEqual(type(x), Frame) #- Slice fibermap too frame = Frame(wave, flux, ivar, mask, rdata, spectrograph=0, fibermap=fibermap) x = frame[frame.fibers < 3] self.assertEqual(len(x.fibers), len(x.fibermap)) x = frame[[1, 2, 3]] self.assertTrue(np.all(x.fibers == x.fibermap['FIBER'])) #- slice with and without options args frame = Frame(wave, flux, ivar, spectrograph=0) x = frame[0:2] self.assertEqual(x.fibermap, None) self.assertEqual(x.chi2pix, None) frame = Frame(wave, flux, ivar, spectrograph=0, fibermap=fibermap, chi2pix=chi2pix) x = frame[0:2] self.assertEqual(len(x.fibermap), 2) self.assertEqual(x.chi2pix.shape, (2, nwave))
def _get_spectra(self): #- Setup data for a Resolution matrix sigma = 4.0 ndiag = 21 xx = np.linspace(-(ndiag - 1) / 2.0, +(ndiag - 1) / 2.0, ndiag) Rdata = np.zeros((self.nspec, ndiag, self.nwave)) for i in range(self.nspec): for j in range(self.nwave): kernel = np.exp(-xx**2 / (2 * sigma)) kernel /= sum(kernel) Rdata[i, :, j] = kernel flux = np.zeros((self.nspec, self.nwave)) ivar = np.ones((self.nspec, self.nwave)) mask = np.zeros((self.nspec, self.nwave), dtype=int) for i in range(self.nspec): R = Resolution(Rdata[i]) flux[i] = R.dot(self.flux) fibermap = lvmspec.io.empty_fibermap(self.nspec, 1500) fibermap['OBJTYPE'][0::2] = 'SKY' return Frame(self.wave, flux, ivar, mask, Rdata, spectrograph=2, fibermap=fibermap)
def test_resolution(self): """ Test that identical spectra convolved with different resolutions results in identical fiberflats """ wave, flux, ivar, mask = _get_data() nspec, nwave = flux.shape #- Setup a Resolution matrix that varies with fiber and wavelength #- Note: this is actually the transpose of the resolution matrix #- I wish I was creating, but as long as we self-consistently #- use it for convolving and solving, that shouldn't matter. sigma = np.linspace(2, 10, nwave * nspec) ndiag = 21 xx = np.linspace(-ndiag / 2.0, +ndiag / 2.0, ndiag) Rdata = np.zeros((nspec, len(xx), nwave)) for i in range(nspec): for j in range(nwave): kernel = np.exp(-xx**2 / (2 * sigma[i * nwave + j]**2)) kernel /= sum(kernel) Rdata[i, :, j] = kernel #- Convolve the data with the resolution matrix convflux = np.empty_like(flux) for i in range(nspec): convflux[i] = Resolution(Rdata[i]).dot(flux[i]) #- Run the code frame = Frame(wave, convflux, ivar, mask, Rdata, spectrograph=0) ff = compute_fiberflat(frame) #- These fiber flats should all be ~1 self.assertTrue(np.all(np.abs(ff.fiberflat - 1) < 0.001))
def test_interface(self): """ Basic test that interface works and identical inputs result in identical outputs """ wave, flux, ivar, mask = _get_data() nspec, nwave = flux.shape #- Setup data for a Resolution matrix sigma = 4.0 ndiag = 11 xx = np.linspace(-(ndiag - 1) / 2.0, +(ndiag - 1) / 2.0, ndiag) Rdata = np.zeros((nspec, ndiag, nwave)) kernel = np.exp(-xx**2 / (2 * sigma)) kernel /= sum(kernel) for i in range(nspec): for j in range(nwave): Rdata[i, :, j] = kernel #- Run the code frame = Frame(wave, flux, ivar, mask, Rdata, spectrograph=0) ff = compute_fiberflat(frame) #- Check shape of outputs self.assertEqual(ff.fiberflat.shape, flux.shape) self.assertEqual(ff.ivar.shape, flux.shape) self.assertEqual(ff.mask.shape, flux.shape) self.assertEqual(len(ff.meanspec), nwave) #- Identical inputs should result in identical ouputs for i in range(1, nspec): self.assertTrue(np.all(ff.fiberflat[i] == ff.fiberflat[0])) self.assertTrue(np.all(ff.ivar[i] == ff.ivar[0]))
def test_apply_fluxcalibration(self): #get frame_data wave = np.arange(5000, 6000) nwave = len(wave) nspec = 3 flux = np.random.uniform(0.9, 1.0, size=(nspec, nwave)) ivar = np.ones_like(flux) origframe = Frame(wave, flux, ivar, spectrograph=0) #define fluxcalib object calib = np.ones_like(origframe.flux) mask = np.zeros(origframe.flux.shape, dtype=np.uint32) calib[0] *= 0.5 calib[1] *= 1.5 # fc with essentially no error fcivar = 1e20 * np.ones_like(origframe.flux) fc = FluxCalib(origframe.wave, calib, fcivar, mask) frame = copy.deepcopy(origframe) apply_flux_calibration(frame, fc) self.assertTrue(np.allclose(frame.ivar, calib**2)) # origframe.flux=0 should result in frame.flux=0 fcivar = np.ones_like(origframe.flux) calib = np.ones_like(origframe.flux) fc = FluxCalib(origframe.wave, calib, fcivar, mask) frame = copy.deepcopy(origframe) frame.flux[0, 0:10] = 0.0 apply_flux_calibration(frame, fc) self.assertTrue(np.all(frame.flux[0, 0:10] == 0.0)) #fcivar=0 should result in frame.ivar=0 fcivar = np.ones_like(origframe.flux) calib = np.ones_like(origframe.flux) fcivar[0, 0:10] = 0.0 fc = FluxCalib(origframe.wave, calib, fcivar, mask) frame = copy.deepcopy(origframe) apply_flux_calibration(frame, fc) self.assertTrue(np.all(frame.ivar[0, 0:10] == 0.0)) # should also work even the calib =0 ?? #fcivar=np.ones_like(origframe.flux) #calib=np.ones_like(origframe.flux) #fcivar[0,0:10]=0.0 #calib[0,0:10]=0.0 #fc=FluxCalib(origframe.wave,calib,fcivar,mask) #frame=copy.deepcopy(origframe) #apply_flux_calibration(frame,fc) #self.assertTrue(np.all(frame.ivar[0,0:10]==0.0)) # test different wavelength bins frame = copy.deepcopy(origframe) calib = np.ones_like(frame.flux) fcivar = np.ones_like(frame.ivar) mask = np.zeros(origframe.flux.shape, dtype=np.uint32) fc = FluxCalib(origframe.wave + 0.01, calib, fcivar, mask) with self.assertRaises(SystemExit): #should be ValueError instead? apply_flux_calibration(frame, fc)
def test_throughput_resolution(self): """ Test that spectra with different throughputs and different resolutions result in fiberflat variations that are only due to throughput. """ wave, flux, ivar, mask = _get_data() nspec, nwave = flux.shape #- Setup a Resolution matrix that varies with fiber and wavelength #- Note: this is actually the transpose of the resolution matrix #- I wish I was creating, but as long as we self-consistently #- use it for convolving and solving, that shouldn't matter. sigma = np.linspace(2, 10, nwave * nspec) ndiag = 21 xx = np.linspace(-ndiag / 2.0, +ndiag / 2.0, ndiag) Rdata = np.zeros((nspec, len(xx), nwave)) for i in range(nspec): for j in range(nwave): kernel = np.exp(-xx**2 / (2 * sigma[i * nwave + j]**2)) kernel /= sum(kernel) Rdata[i, :, j] = kernel #- Vary the input flux prior to calculating the fiber flat flux[1] *= 1.1 flux[2] *= 1.2 flux[3] /= 1.1 flux[4] /= 1.2 #- Convolve the data with the varying resolution matrix convflux = np.empty_like(flux) for i in range(nspec): convflux[i] = Resolution(Rdata[i]).dot(flux[i]) #- Run the code frame = Frame(wave, convflux, ivar, mask, Rdata, spectrograph=0) #- Set an accuracy for this accuracy = 1.e-9 ff = compute_fiberflat(frame, accuracy=accuracy) #- Compare variation with middle fiber mid = ff.fiberflat.shape[0] // 2 diff = (ff.fiberflat[1] / 1.1 - ff.fiberflat[mid]) self.assertLess(np.max(np.abs(diff)), accuracy) diff = (ff.fiberflat[2] / 1.2 - ff.fiberflat[mid]) self.assertLess(np.max(np.abs(diff)), accuracy) diff = (ff.fiberflat[3] * 1.1 - ff.fiberflat[mid]) self.assertLess(np.max(np.abs(diff)), accuracy) diff = (ff.fiberflat[4] * 1.2 - ff.fiberflat[mid]) self.assertLess(np.max(np.abs(diff)), accuracy)
def test_apply_fiberflat(self): '''test apply_fiberflat interface and changes to flux and mask''' wave = np.arange(5000, 5050) nwave = len(wave) nspec = 3 flux = np.random.uniform(size=(nspec, nwave)) ivar = np.ones_like(flux) frame = Frame(wave, flux, ivar, spectrograph=0) fiberflat = np.ones_like(flux) ffivar = 2 * np.ones_like(flux) ffmask = np.zeros_like(flux) fiberflat[0] *= 0.8 fiberflat[1] *= 1.2 fiberflat[2, 0:10] = 0 #- bad fiberflat ffivar[2, 10:20] = 0 #- bad fiberflat ffmask[2, 20:30] = 1 #- bad fiberflat ff = FiberFlat(wave, fiberflat, ffivar) origframe = copy.deepcopy(frame) apply_fiberflat(frame, ff) #- was fiberflat applied? self.assertTrue(np.all(frame.flux[0] == origframe.flux[0] / 0.8)) self.assertTrue(np.all(frame.flux[1] == origframe.flux[1] / 1.2)) self.assertTrue(np.all(frame.flux[2] == origframe.flux[2])) #- did mask get set? ii = (ff.fiberflat == 0) self.assertTrue(np.all((frame.mask[ii] & specmask.BADFIBERFLAT) != 0)) ii = (ff.ivar == 0) self.assertTrue(np.all((frame.mask[ii] & specmask.BADFIBERFLAT) != 0)) ii = (ff.mask != 0) self.assertTrue(np.all((frame.mask[ii] & specmask.BADFIBERFLAT) != 0)) #- Should fail if frame and ff don't have a common wavelength grid frame.wave = frame.wave + 0.1 with self.assertRaises(ValueError): apply_fiberflat(frame, ff)
def test_main(self): """ Test the main program. """ # generate the frame data wave, flux, ivar, mask = _get_data() nspec, nwave = flux.shape #- Setup data for a Resolution matrix sigma = 4.0 ndiag = 11 xx = np.linspace(-(ndiag - 1) / 2.0, +(ndiag - 1) / 2.0, ndiag) Rdata = np.zeros((nspec, ndiag, nwave)) kernel = np.exp(-xx**2 / (2 * sigma)) kernel /= sum(kernel) for i in range(nspec): for j in range(nwave): Rdata[i, :, j] = kernel #- Convolve the data with the resolution matrix convflux = np.empty_like(flux) for i in range(nspec): convflux[i] = Resolution(Rdata[i]).dot(flux[i]) # create a fake fibermap fibermap = io.empty_fibermap(nspec, nwave) for i in range(0, nspec): fibermap['OBJTYPE'][i] = 'FAKE' io.write_fibermap(self.testfibermap, fibermap) #- write out the frame frame = Frame(wave, convflux, ivar, mask, Rdata, spectrograph=0, fibermap=fibermap, meta=dict(FLAVOR='flat')) write_frame(self.testframe, frame, fibermap=fibermap) # set program arguments argstr = ['--infile', self.testframe, '--outfile', self.testflat] # run it args = ffscript.parse(options=argstr) ffscript.main(args)
def test_apply_fiberflat_ivar(self): '''test error propagation in apply_fiberflat''' wave = np.arange(5000, 5010) nwave = len(wave) nspec = 3 flux = np.random.uniform(0.9, 1.0, size=(nspec, nwave)) ivar = np.ones_like(flux) origframe = Frame(wave, flux, ivar, spectrograph=0) fiberflat = np.ones_like(flux) ffmask = np.zeros_like(flux) fiberflat[0] *= 0.5 fiberflat[1] *= 1.5 #- ff with essentially no error ffivar = 1e20 * np.ones_like(flux) ff = FiberFlat(wave, fiberflat, ffivar) frame = copy.deepcopy(origframe) apply_fiberflat(frame, ff) self.assertTrue(np.allclose(frame.ivar, fiberflat**2)) #- ff with large error ffivar = np.ones_like(flux) ff = FiberFlat(wave, fiberflat, ffivar) frame = copy.deepcopy(origframe) apply_fiberflat(frame, ff) #- c = a/b #- (sigma_c/c)^2 = (sigma_a/a)^2 + (sigma_b/b)^2 var = frame.flux**2 * (1.0/(origframe.ivar * origframe.flux**2) + \ 1.0/(ff.ivar * ff.fiberflat**2)) self.assertTrue(np.allclose(frame.ivar, 1 / var)) #- ff.ivar=0 should result in frame.ivar=0, even if ff.fiberflat=0 too ffivar = np.ones_like(flux) ffivar[0, 0:5] = 0.0 fiberflat[0, 0:5] = 0.0 ff = FiberFlat(wave, fiberflat, ffivar) frame = copy.deepcopy(origframe) apply_fiberflat(frame, ff) self.assertTrue(np.all(frame.ivar[0, 0:5] == 0.0))
def _write_frame(self, flavor='none', camera='b', expid=1, night='20160607'): """Write a fake frame""" flux = np.ones((self.nspec, self.nwave)) ivar = np.ones((self.nspec, self.nwave)) mask = np.zeros((self.nspec, self.nwave), dtype=int) Rdata = np.ones((self.nspec, 1, self.nwave)) fibermap = self._get_fibermap() frame = Frame(self.wave, flux, ivar, mask, Rdata, fibermap=fibermap, meta=dict(FLAVOR=flavor, CAMERA=camera, EXPID=expid, NIGHT=night, EXPTIME=1000.)) io.write_frame(self.framefile, frame)
def test_throughput(self): """ Test that spectra with different throughputs but the same resolution produce a fiberflat mirroring the variations in throughput """ wave, flux, ivar, mask = _get_data() nspec, nwave = flux.shape #- Setup data for a Resolution matrix sigma = 4.0 ndiag = 21 xx = np.linspace(-(ndiag - 1) / 2.0, +(ndiag - 1) / 2.0, ndiag) Rdata = np.zeros((nspec, ndiag, nwave)) kernel = np.exp(-xx**2 / (2 * sigma)) kernel /= sum(kernel) for i in range(nspec): for j in range(nwave): Rdata[i, :, j] = kernel #- Vary the input flux prior to calculating the fiber flat flux[1] *= 1.1 flux[2] *= 1.2 flux[3] *= 0.8 #- Convolve with the (common) resolution matrix convflux = np.empty_like(flux) for i in range(nspec): convflux[i] = Resolution(Rdata[i]).dot(flux[i]) frame = Frame(wave, convflux, ivar, mask, Rdata, spectrograph=0) ff = compute_fiberflat(frame) #- flux[1] is brighter, so should fiberflat[1]. etc. self.assertTrue(np.allclose(ff.fiberflat[0], ff.fiberflat[1] / 1.1)) self.assertTrue(np.allclose(ff.fiberflat[0], ff.fiberflat[2] / 1.2)) self.assertTrue(np.allclose(ff.fiberflat[0], ff.fiberflat[3] / 0.8))
def test_init(self): nspec = 3 nwave = 10 wave = np.arange(nwave) flux = np.random.uniform(size=(nspec, nwave)) ivar = np.ones(flux.shape) mask = np.zeros(flux.shape, dtype=int) rdata = np.ones((nspec, 5, nwave)) frame = Frame(wave, flux, ivar, mask, rdata, spectrograph=0) self.assertTrue(np.all(frame.wave == wave)) self.assertTrue(np.all(frame.flux == flux)) self.assertTrue(np.all(frame.ivar == ivar)) self.assertTrue(np.all(frame.resolution_data == rdata)) self.assertEqual(frame.nspec, nspec) self.assertEqual(frame.nwave, nwave) self.assertTrue(isinstance(frame.R[0], Resolution)) #- check dimensionality mismatches self.assertRaises(AssertionError, lambda x: Frame(*x), (wave, wave, ivar, mask, rdata)) self.assertRaises(AssertionError, lambda x: Frame(*x), (wave, flux[0:2], ivar, mask, rdata)) #- Check constructing with defaults (must set fibers by some method) frame = Frame(wave, flux, ivar, spectrograph=0) self.assertEqual(frame.flux.shape, frame.mask.shape) #- Check usage of fibers inputs fibers = np.arange(nspec) frame = Frame(wave, flux, ivar, fibers=fibers) frame = Frame(wave, flux, ivar, fibers=fibers * 2) manyfibers = np.arange(2 * nspec) self.assertRaises(ValueError, lambda x: Frame(*x), (wave, flux, ivar, None, None, manyfibers)) #- Check usage of meta meta = dict(BLAT=0, FOO='abc') frame = Frame(wave, flux, ivar, meta=meta, spectrograph=0) self.assertEqual(frame.meta['BLAT'], meta['BLAT']) self.assertEqual(frame.meta['FOO'], meta['FOO']) #- Check usage of spectrograph input for i in range(3): frame = Frame(wave, flux, ivar, spectrograph=i) self.assertEqual(len(frame.fibers), nspec) self.assertEqual(frame.fibers[0], i * 500) # Check multi-mode assignment of fibers self.assertRaises(ValueError, lambda x: Frame(*x), (wave, flux, ivar, None, None, fibers, 1, meta)) #- Check a fiber-assigning method is required self.assertRaises(ValueError, lambda x: Frame(*x), (wave, flux, ivar)) # Check repr print(frame)
def main(args): log = get_logger() nspec = 500 #- Hardcode! Number of DESI fibers per spectrograph #- Sanity check that all spectra are represented fibers = set() for filename in args.files: x = fits.getdata(filename, 'FIBERMAP') fibers.update(set(x['FIBER'])) if len(fibers) != nspec: msg = "Input files only have {} instead of {} spectra".format( len(fibers), nspec) if args.force: log.warning(msg) else: log.fatal(msg) sys.exit(1) #- Read a file to get basic dimensions w = fits.getdata(args.files[0], 'WAVELENGTH') nwave = len(w) R1 = fits.getdata(args.files[0], 'RESOLUTION') ndiag = R1.shape[1] hdr = fits.getheader(args.files[0]) camera = hdr['CAMERA'].lower() #- b0, r1, .. z9 spectrograph = int(camera[1]) fibermin = spectrograph * nspec #- Output arrays to fill flux = np.zeros((nspec, nwave)) ivar = np.zeros((nspec, nwave)) R = np.zeros((nspec, ndiag, nwave)) fibermap = lvmspec.io.empty_fibermap(nspec, specmin=fibermin) mask = np.zeros((nspec, nwave), dtype=np.uint32) chi2pix = np.zeros((nspec, nwave)) #- Fill them! for filename in args.files: fx = fits.open(filename) xhdr = fx[0].header xflux = fx['FLUX'].data xivar = fx['IVAR'].data xR = fx['RESOLUTION'].data xfibermap = fx['FIBERMAP'].data xmask = fx['MASK'].data xchi2pix = fx['CHI2PIX'].data fx.close() ii = xfibermap['FIBER'] % nspec flux[ii] = xflux ivar[ii] = xivar R[ii] = xR fibermap[ii] = xfibermap mask[ii] = xmask chi2pix[ii] = xchi2pix #- Write it out print("Writing", args.output) frame = Frame(w, flux, ivar, mask=mask, resolution_data=R, spectrograph=spectrograph, meta=hdr, fibermap=fibermap, chi2pix=chi2pix) lvmspec.io.write_frame(args.output, frame) #- Scary! Delete input files if args.delete: for filename in args.files: os.remove(filename)
def main_mpi(args, comm=None): log = get_logger() psf_file = args.psf input_file = args.input # these parameters are interpreted as the *global* spec range, # to be divided among processes. specmin = args.specmin nspec = args.nspec #- Load input files and broadcast # FIXME: after we have fixed the serialization # of the PSF, read and broadcast here, to reduce # disk contention. img = None if comm is None: img = io.read_image(input_file) else: if comm.rank == 0: img = io.read_image(input_file) img = comm.bcast(img, root=0) psf = load_psf(psf_file) # get spectral range if nspec is None: nspec = psf.nspec specmax = specmin + nspec camera = img.meta['CAMERA'].lower() #- b0, r1, .. z9 spectrograph = int(camera[1]) fibermin = spectrograph * psf.nspec + specmin if args.fibermap is not None: fibermap = io.read_fibermap(args.fibermap) fibermap = fibermap[fibermin:fibermin + nspec] fibers = fibermap['FIBER'] else: fibermap = None fibers = np.arange(fibermin, fibermin + nspec, dtype='i4') #- Get wavelength grid from options if args.wavelength is not None: wstart, wstop, dw = [float(tmp) for tmp in args.wavelength.split(',')] else: wstart = np.ceil(psf.wmin_all) wstop = np.floor(psf.wmax_all) dw = 0.7 wave = np.arange(wstart, wstop + dw / 2.0, dw) nwave = len(wave) #- Confirm that this PSF covers these wavelengths for these spectra psf_wavemin = np.max(psf.wavelength(list(range(specmin, specmax)), y=0)) psf_wavemax = np.min( psf.wavelength(list(range(specmin, specmax)), y=psf.npix_y - 1)) if psf_wavemin > wstart: raise ValueError( 'Start wavelength {:.2f} < min wavelength {:.2f} for these fibers'. format(wstart, psf_wavemin)) if psf_wavemax < wstop: raise ValueError( 'Stop wavelength {:.2f} > max wavelength {:.2f} for these fibers'. format(wstop, psf_wavemax)) # Now we divide our spectra into bundles bundlesize = args.bundlesize checkbundles = set() checkbundles.update( np.floor_divide(np.arange(specmin, specmax), bundlesize * np.ones(nspec)).astype(int)) bundles = sorted(checkbundles) nbundle = len(bundles) bspecmin = {} bnspec = {} for b in bundles: if specmin > b * bundlesize: bspecmin[b] = specmin else: bspecmin[b] = b * bundlesize if (b + 1) * bundlesize > specmax: bnspec[b] = specmax - bspecmin[b] else: bnspec[b] = bundlesize # Now we assign bundles to processes nproc = 1 rank = 0 if comm is not None: nproc = comm.size rank = comm.rank mynbundle = int(nbundle // nproc) myfirstbundle = 0 leftover = nbundle % nproc if rank < leftover: mynbundle += 1 myfirstbundle = rank * mynbundle else: myfirstbundle = ((mynbundle + 1) * leftover) + (mynbundle * (rank - leftover)) if rank == 0: #- Print parameters log.info("extract: input = {}".format(input_file)) log.info("extract: psf = {}".format(psf_file)) log.info("extract: specmin = {}".format(specmin)) log.info("extract: nspec = {}".format(nspec)) log.info("extract: wavelength = {},{},{}".format(wstart, wstop, dw)) log.info("extract: nwavestep = {}".format(args.nwavestep)) log.info("extract: regularize = {}".format(args.regularize)) # get the root output file outpat = re.compile(r'(.*)\.fits') outmat = outpat.match(args.output) if outmat is None: raise RuntimeError( "extraction output file should have .fits extension") outroot = outmat.group(1) outdir = os.path.normpath(os.path.dirname(outroot)) if rank == 0: if not os.path.isdir(outdir): os.makedirs(outdir) if comm is not None: comm.barrier() failcount = 0 for b in range(myfirstbundle, myfirstbundle + mynbundle): outbundle = "{}_{:02d}.fits".format(outroot, b) outmodel = "{}_model_{:02d}.fits".format(outroot, b) log.info('extract: Rank {} starting {} spectra {}:{} at {}'.format( rank, os.path.basename(input_file), bspecmin[b], bspecmin[b] + bnspec[b], time.asctime(), )) sys.stdout.flush() #- The actual extraction try: results = ex2d(img.pix, img.ivar * (img.mask == 0), psf, bspecmin[b], bnspec[b], wave, regularize=args.regularize, ndecorr=args.decorrelate_fibers, bundlesize=bundlesize, wavesize=args.nwavestep, verbose=args.verbose, full_output=True, nsubbundles=args.nsubbundles) flux = results['flux'] ivar = results['ivar'] Rdata = results['resolution_data'] chi2pix = results['chi2pix'] mask = np.zeros(flux.shape, dtype=np.uint32) mask[results['pixmask_fraction'] > 0.5] |= specmask.SOMEBADPIX mask[results['pixmask_fraction'] == 1.0] |= specmask.ALLBADPIX mask[chi2pix > 100.0] |= specmask.BAD2DFIT #- Augment input image header for output img.meta['NSPEC'] = (nspec, 'Number of spectra') img.meta['WAVEMIN'] = (wstart, 'First wavelength [Angstroms]') img.meta['WAVEMAX'] = (wstop, 'Last wavelength [Angstroms]') img.meta['WAVESTEP'] = (dw, 'Wavelength step size [Angstroms]') img.meta['SPECTER'] = (specter.__version__, 'https://github.com/desihub/specter') img.meta['IN_PSF'] = (_trim(psf_file), 'Input spectral PSF') img.meta['IN_IMG'] = (_trim(input_file), 'Input image') if fibermap is not None: bfibermap = fibermap[bspecmin[b] - specmin:bspecmin[b] + bnspec[b] - specmin] else: bfibermap = None bfibers = fibers[bspecmin[b] - specmin:bspecmin[b] + bnspec[b] - specmin] frame = Frame(wave, flux, ivar, mask=mask, resolution_data=Rdata, fibers=bfibers, meta=img.meta, fibermap=bfibermap, chi2pix=chi2pix) #- Write output frame.meta['BUNIT'] = 'photon/bin' io.write_frame(outbundle, frame) if args.model is not None: from astropy.io import fits fits.writeto(outmodel, results['modelimage'], header=frame.meta) log.info('extract: Done {} spectra {}:{} at {}'.format( os.path.basename(input_file), bspecmin[b], bspecmin[b] + bnspec[b], time.asctime())) sys.stdout.flush() except: # Log the error and increment the number of failures log.error( "extract: FAILED bundle {}, spectrum range {}:{}".format( b, bspecmin[b], bspecmin[b] + bnspec[b])) exc_type, exc_value, exc_traceback = sys.exc_info() lines = traceback.format_exception(exc_type, exc_value, exc_traceback) log.error(''.join(lines)) failcount += 1 sys.stdout.flush() if comm is not None: failcount = comm.allreduce(failcount) if failcount > 0: # all processes throw raise RuntimeError("some extraction bundles failed") if rank == 0: mergeopts = ['--output', args.output, '--force', '--delete'] mergeopts.extend( ["{}_{:02d}.fits".format(outroot, b) for b in bundles]) mergeargs = mergebundles.parse(mergeopts) mergebundles.main(mergeargs) if args.model is not None: model = None for b in bundles: outmodel = "{}_model_{:02d}.fits".format(outroot, b) if model is None: model = fits.getdata(outmodel) else: #- TODO: test and warn if models overlap for pixels with #- non-zero values model += fits.getdata(outmodel) os.remove(outmodel) fits.writeto(args.model, model)
def main(args): if args.mpi: from mpi4py import MPI comm = MPI.COMM_WORLD return main_mpi(args, comm) psf_file = args.psf input_file = args.input specmin = args.specmin nspec = args.nspec #- Load input files psf = load_psf(psf_file) img = io.read_image(input_file) if nspec is None: nspec = psf.nspec specmax = specmin + nspec camera = img.meta['CAMERA'].lower() #- b0, r1, .. z9 spectrograph = int(camera[1]) fibermin = spectrograph * psf.nspec + specmin print('Starting {} spectra {}:{} at {}'.format( os.path.basename(input_file), specmin, specmin + nspec, time.asctime())) if args.fibermap is not None: fibermap = io.read_fibermap(args.fibermap) fibermap = fibermap[fibermin:fibermin + nspec] fibers = fibermap['FIBER'] else: fibermap = None fibers = np.arange(fibermin, fibermin + nspec, dtype='i4') #- Get wavelength grid from options if args.wavelength is not None: wstart, wstop, dw = [float(tmp) for tmp in args.wavelength.split(',')] else: wstart = np.ceil(psf.wmin_all) wstop = np.floor(psf.wmax_all) dw = 0.7 wave = np.arange(wstart, wstop + dw / 2.0, dw) nwave = len(wave) bundlesize = args.bundlesize #- Confirm that this PSF covers these wavelengths for these spectra psf_wavemin = np.max(psf.wavelength(list(range(specmin, specmax)), y=0)) psf_wavemax = np.min( psf.wavelength(list(range(specmin, specmax)), y=psf.npix_y - 1)) if psf_wavemin > wstart: raise ValueError( 'Start wavelength {:.2f} < min wavelength {:.2f} for these fibers'. format(wstart, psf_wavemin)) if psf_wavemax < wstop: raise ValueError( 'Stop wavelength {:.2f} > max wavelength {:.2f} for these fibers'. format(wstop, psf_wavemax)) #- Print parameters print("""\ #--- Extraction Parameters --- input: {input} psf: {psf} output: {output} wavelength: {wstart} - {wstop} AA steps {dw} specmin: {specmin} nspec: {nspec} regularize: {regularize} #-----------------------------\ """.format(input=input_file, psf=psf_file, output=args.output, wstart=wstart, wstop=wstop, dw=dw, specmin=specmin, nspec=nspec, regularize=args.regularize)) #- The actual extraction results = ex2d(img.pix, img.ivar * (img.mask == 0), psf, specmin, nspec, wave, regularize=args.regularize, ndecorr=args.decorrelate_fibers, bundlesize=bundlesize, wavesize=args.nwavestep, verbose=args.verbose, full_output=True, nsubbundles=args.nsubbundles) flux = results['flux'] ivar = results['ivar'] Rdata = results['resolution_data'] chi2pix = results['chi2pix'] mask = np.zeros(flux.shape, dtype=np.uint32) mask[results['pixmask_fraction'] > 0.5] |= specmask.SOMEBADPIX mask[results['pixmask_fraction'] == 1.0] |= specmask.ALLBADPIX mask[chi2pix > 100.0] |= specmask.BAD2DFIT #- Augment input image header for output img.meta['NSPEC'] = (nspec, 'Number of spectra') img.meta['WAVEMIN'] = (wstart, 'First wavelength [Angstroms]') img.meta['WAVEMAX'] = (wstop, 'Last wavelength [Angstroms]') img.meta['WAVESTEP'] = (dw, 'Wavelength step size [Angstroms]') img.meta['SPECTER'] = (specter.__version__, 'https://github.com/desihub/specter') img.meta['IN_PSF'] = (_trim(psf_file), 'Input spectral PSF') img.meta['IN_IMG'] = (_trim(input_file), 'Input image') frame = Frame(wave, flux, ivar, mask=mask, resolution_data=Rdata, fibers=fibers, meta=img.meta, fibermap=fibermap, chi2pix=chi2pix) #- Write output frame.meta['BUNIT'] = 'photon/bin' io.write_frame(args.output, frame) if args.model is not None: from astropy.io import fits fits.writeto(args.model, results['modelimage'], header=frame.meta, clobber=True) print('Done {} spectra {}:{} at {}'.format(os.path.basename(input_file), specmin, specmin + nspec, time.asctime()))
def main(args=None): ''' Converts simspec -> frame files; see fastframe --help for usage options ''' #- TODO: use lvmutil.log if isinstance(args, (list, tuple, type(None))): args = parse(args) print('Reading files') simspec = lvmsim.io.read_simspec(args.simspec) if simspec.flavor == 'arc': print('arc exposure; no frames to output') return fibermap = simspec.fibermap obs = simspec.obs night = simspec.header['NIGHT'] expid = simspec.header['EXPID'] firstspec = args.firstspec nspec = min(args.nspec, len(fibermap) - firstspec) print('Simulating spectra {}-{}'.format(firstspec, firstspec + nspec)) wave = simspec.wave['brz'] flux = simspec.flux ii = slice(firstspec, firstspec + nspec) if simspec.flavor == 'science': sim = lvmsim.simexp.simulate_spectra(wave, flux[ii], fibermap=fibermap[ii], obsconditions=obs, dwave_out=1.0) elif simspec.flavor in ['arc', 'flat', 'calib']: x = fibermap['X_TARGET'] y = fibermap['Y_TARGET'] fiber_area = lvmsim.simexp.fiber_area_arcsec2(fibermap['X_TARGET'], fibermap['Y_TARGET']) surface_brightness = (flux.T / fiber_area).T config = lvmsim.simexp._specsim_config_for_wave(wave, dwave_out=1.0) # sim = specsim.simulator.Simulator(config, num_fibers=nspec) sim = lvmsim.specsim.get_simulator(config, num_fibers=nspec) sim.observation.exposure_time = simspec.header['EXPTIME'] * u.s sbunit = 1e-17 * u.erg / (u.Angstrom * u.s * u.cm**2 * u.arcsec**2) xy = np.vstack([x, y]).T * u.mm sim.simulate(calibration_surface_brightness=surface_brightness[ii] * sbunit, focal_positions=xy[ii]) else: raise ValueError('Unknown simspec flavor {}'.format(simspec.flavor)) sim.generate_random_noise() for i, results in enumerate(sim.camera_output): results = sim.camera_output[i] wave = results['wavelength'] scale = 1e17 if args.cframe: phot = scale * (results['observed_flux'] + results['random_noise_electrons'] * results['flux_calibration']).T ivar = 1. / scale**2 * results['flux_inverse_variance'].T else: phot = (results['num_source_electrons'] + \ results['num_sky_electrons'] + \ results['num_dark_electrons'] + \ results['random_noise_electrons']).T ivar = 1.0 / results['variance_electrons'].T R = Resolution( sim.instrument.cameras[i].get_output_resolution_matrix()) Rdata = np.tile(R.data.T, nspec).T.reshape(nspec, R.data.shape[0], R.data.shape[1]) assert np.all(Rdata[0] == R.data) assert phot.shape == (nspec, len(wave)) for spectro in range(10): imin = max(firstspec, spectro * 500) - firstspec imax = min(firstspec + nspec, (spectro + 1) * 500) - firstspec if imax <= imin: continue xphot = phot[imin:imax] xivar = ivar[imin:imax] xfibermap = fibermap[ii][imin:imax] camera = '{}{}'.format(sim.camera_names[i], spectro) meta = simspec.header.copy() meta['CAMERA'] = camera if args.cframe: units = '1e-17 erg/(s cm2 A)' else: units = 'photon/bin' if 'BUNIT' in meta: meta['BUNIT'] = units frame = Frame(wave, xphot, xivar, resolution_data=Rdata[0:imax - imin], spectrograph=spectro, fibermap=xfibermap, meta=meta) if args.cframe: outfile = lvmspec.io.findfile('cframe', night, expid, camera, outdir=args.outdir) else: outfile = lvmspec.io.findfile('frame', night, expid, camera, outdir=args.outdir) print('writing {}'.format(outfile)) lvmspec.io.write_frame(outfile, frame, units=units)
def main(args): # Set up the logger if args.verbose: log = get_logger(DEBUG) else: log = get_logger() # Make sure all necessary environment variables are set setup_envs() # Initialize random number generator to use. np.random.seed(args.seed) random_state = np.random.RandomState(args.seed) # Derive spectrograph number from nstart if needed if args.spectrograph is None: args.spectrograph = args.nstart / args.n_fibers # Read fibermapfile to get object type, night and expid fibermap, objtype, night, expid = get_fibermap(args.fibermap, log=log, nspec=args.nspec) # Initialize the spectral simulator log.info("Initializing SpecSim with config {}".format(args.config)) lvmparams = load_lvmparams(config=args.config, telescope=args.telescope) qsim = get_simulator(args.config, num_fibers=1, params=lvmparams) if args.simspec: # Read the input file log.info('Reading input file {}'.format(args.simspec)) simspec = lvmsim.io.read_simspec(args.simspec) nspec = simspec.nspec if simspec.flavor == 'arc': # - TODO: do we need quickgen to support arcs? For full pipeline # - arcs are used to measure PSF but aren't extracted except for # - debugging. # - TODO: if we do need arcs, this needs to be redone. # - conversion from phot to flux doesn't include throughput, # - and arc lines are rebinned to nearest 0.2 A. # Create full wavelength and flux arrays for arc exposure wave_b = np.array(simspec.wave['b']) wave_r = np.array(simspec.wave['r']) wave_z = np.array(simspec.wave['z']) phot_b = np.array(simspec.phot['b'][0]) phot_r = np.array(simspec.phot['r'][0]) phot_z = np.array(simspec.phot['z'][0]) sim_wave = np.concatenate((wave_b, wave_r, wave_z)) sim_phot = np.concatenate((phot_b, phot_r, phot_z)) wavelengths = np.arange(3533., 9913.1, 0.2) phot = np.zeros(len(wavelengths)) for i in range(len(sim_wave)): wavelength = sim_wave[i] flux_index = np.argmin(abs(wavelength - wavelengths)) phot[flux_index] = sim_phot[i] # Convert photons to flux: following specter conversion method dw = np.gradient(wavelengths) exptime = 5. # typical BOSS exposure time in s fibarea = const.pi * (1.07e-2 / 2)**2 # cross-sectional fiber area in cm^2 hc = 1.e17 * const.h * const.c # convert to erg A spectra = (hc * exptime * fibarea * dw * phot) / wavelengths else: wavelengths = simspec.wave['brz'] spectra = simspec.flux if nspec < args.nspec: log.info("Only {} spectra in input file".format(nspec)) args.nspec = nspec else: # Initialize the output truth table. spectra = [] wavelengths = qsim.source.wavelength_out.to(u.Angstrom).value npix = len(wavelengths) truth = dict() meta = Table() truth['OBJTYPE'] = np.zeros(args.nspec, dtype=(str, 10)) truth['FLUX'] = np.zeros((args.nspec, npix)) truth['WAVE'] = wavelengths jj = list() for thisobj in set(true_objtype): ii = np.where(true_objtype == thisobj)[0] nobj = len(ii) truth['OBJTYPE'][ii] = thisobj log.info('Generating {} template'.format(thisobj)) # Generate the templates if thisobj == 'ELG': elg = lvmsim.templates.ELG(wave=wavelengths, add_SNeIa=args.add_SNeIa) flux, tmpwave, meta1 = elg.make_templates( nmodel=nobj, seed=args.seed, zrange=args.zrange_elg, sne_rfluxratiorange=args.sne_rfluxratiorange) elif thisobj == 'LRG': lrg = lvmsim.templates.LRG(wave=wavelengths, add_SNeIa=args.add_SNeIa) flux, tmpwave, meta1 = lrg.make_templates( nmodel=nobj, seed=args.seed, zrange=args.zrange_lrg, sne_rfluxratiorange=args.sne_rfluxratiorange) elif thisobj == 'QSO': qso = lvmsim.templates.QSO(wave=wavelengths) flux, tmpwave, meta1 = qso.make_templates( nmodel=nobj, seed=args.seed, zrange=args.zrange_qso) elif thisobj == 'BGS': bgs = lvmsim.templates.BGS(wave=wavelengths, add_SNeIa=args.add_SNeIa) flux, tmpwave, meta1 = bgs.make_templates( nmodel=nobj, seed=args.seed, zrange=args.zrange_bgs, rmagrange=args.rmagrange_bgs, sne_rfluxratiorange=args.sne_rfluxratiorange) elif thisobj == 'STD': fstd = lvmsim.templates.FSTD(wave=wavelengths) flux, tmpwave, meta1 = fstd.make_templates(nmodel=nobj, seed=args.seed) elif thisobj == 'QSO_BAD': # use STAR template no color cuts star = lvmsim.templates.STAR(wave=wavelengths) flux, tmpwave, meta1 = star.make_templates(nmodel=nobj, seed=args.seed) elif thisobj == 'MWS_STAR' or thisobj == 'MWS': mwsstar = lvmsim.templates.MWS_STAR(wave=wavelengths) flux, tmpwave, meta1 = mwsstar.make_templates(nmodel=nobj, seed=args.seed) elif thisobj == 'WD': wd = lvmsim.templates.WD(wave=wavelengths) flux, tmpwave, meta1 = wd.make_templates(nmodel=nobj, seed=args.seed) elif thisobj == 'SKY': flux = np.zeros((nobj, npix)) meta1 = Table(dict(REDSHIFT=np.zeros(nobj, dtype=np.float32))) elif thisobj == 'TEST': flux = np.zeros((args.nspec, npix)) indx = np.where(wave > 5800.0 - 1E-6)[0][0] ref_integrated_flux = 1E-10 ref_cst_flux_density = 1E-17 single_line = (np.arange(args.nspec) % 2 == 0).astype( np.float32) continuum = (np.arange(args.nspec) % 2 == 1).astype(np.float32) for spec in range(args.nspec): flux[spec, indx] = single_line[ spec] * ref_integrated_flux / np.gradient(wavelengths)[ indx] # single line flux[spec] += continuum[ spec] * ref_cst_flux_density # flat continuum meta1 = Table( dict(REDSHIFT=np.zeros(args.nspec, dtype=np.float32), LINE=wave[indx] * np.ones(args.nspec, dtype=np.float32), LINEFLUX=single_line * ref_integrated_flux, CONSTFLUXDENSITY=continuum * ref_cst_flux_density)) else: log.fatal('Unknown object type {}'.format(thisobj)) sys.exit(1) # Pack it in. truth['FLUX'][ii] = flux meta = vstack([meta, meta1]) jj.append(ii.tolist()) # Sanity check on units; templates currently return ergs, not 1e-17 ergs... # assert (thisobj == 'SKY') or (np.max(truth['FLUX']) < 1e-6) # Sort the metadata table. jj = sum(jj, []) meta_new = Table() for k in range(args.nspec): index = int(np.where(np.array(jj) == k)[0]) meta_new = vstack([meta_new, meta[index]]) meta = meta_new # Add TARGETID and the true OBJTYPE to the metadata table. meta.add_column( Column(true_objtype, dtype=(str, 10), name='TRUE_OBJTYPE')) meta.add_column(Column(targetids, name='TARGETID')) # Rename REDSHIFT -> TRUEZ anticipating later table joins with zbest.Z meta.rename_column('REDSHIFT', 'TRUEZ') # ---------- end simspec # explicitly set location on focal plane if needed to support airmass # variations when using specsim v0.5 if qsim.source.focal_xy is None: qsim.source.focal_xy = (u.Quantity(0, 'mm'), u.Quantity(100, 'mm')) # Set simulation parameters from the simspec header or lvmparams bright_objects = ['bgs', 'mws', 'bright', 'BGS', 'MWS', 'BRIGHT_MIX'] gray_objects = ['gray', 'grey'] if args.simspec is None: object_type = objtype flavor = None elif simspec.flavor == 'science': object_type = None flavor = simspec.header['PROGRAM'] else: object_type = None flavor = simspec.flavor log.warning( 'Maybe using an outdated simspec file with flavor={}'.format( flavor)) # Set airmass if args.airmass is not None: qsim.atmosphere.airmass = args.airmass elif args.simspec and 'AIRMASS' in simspec.header: qsim.atmosphere.airmass = simspec.header['AIRMASS'] else: qsim.atmosphere.airmass = 1.25 # Science Req. Doc L3.3.2 # Set site location if args.location is not None: qsim.observation.observatory = args.location else: qsim.observation.observatory = 'APO' # Set exptime if args.exptime is not None: qsim.observation.exposure_time = args.exptime * u.s elif args.simspec and 'EXPTIME' in simspec.header: qsim.observation.exposure_time = simspec.header['EXPTIME'] * u.s elif objtype in bright_objects: qsim.observation.exposure_time = lvmparams['exptime_bright'] * u.s else: qsim.observation.exposure_time = lvmparams['exptime_dark'] * u.s # Set Moon Phase if args.moon_phase is not None: qsim.atmosphere.moon.moon_phase = args.moon_phase elif args.simspec and 'MOONFRAC' in simspec.header: qsim.atmosphere.moon.moon_phase = simspec.header['MOONFRAC'] elif flavor in bright_objects or object_type in bright_objects: qsim.atmosphere.moon.moon_phase = 0.7 elif flavor in gray_objects: qsim.atmosphere.moon.moon_phase = 0.1 else: qsim.atmosphere.moon.moon_phase = 0.5 # Set Moon Zenith if args.moon_zenith is not None: qsim.atmosphere.moon.moon_zenith = args.moon_zenith * u.deg elif args.simspec and 'MOONALT' in simspec.header: qsim.atmosphere.moon.moon_zenith = simspec.header['MOONALT'] * u.deg elif flavor in bright_objects or object_type in bright_objects: qsim.atmosphere.moon.moon_zenith = 30 * u.deg elif flavor in gray_objects: qsim.atmosphere.moon.moon_zenith = 80 * u.deg else: qsim.atmosphere.moon.moon_zenith = 100 * u.deg # Set Moon - Object Angle if args.moon_angle is not None: qsim.atmosphere.moon.separation_angle = args.moon_angle * u.deg elif args.simspec and 'MOONSEP' in simspec.header: qsim.atmosphere.moon.separation_angle = simspec.header[ 'MOONSEP'] * u.deg elif flavor in bright_objects or object_type in bright_objects: qsim.atmosphere.moon.separation_angle = 50 * u.deg elif flavor in gray_objects: qsim.atmosphere.moon.separation_angle = 60 * u.deg else: qsim.atmosphere.moon.separation_angle = 60 * u.deg # Initialize per-camera output arrays that will be saved waves, trueflux, noisyflux, obsivar, resolution, sflux = {}, {}, {}, {}, {}, {} maxbin = 0 nmax = args.nspec for camera in qsim.instrument.cameras: # Lookup this camera's resolution matrix and convert to the sparse format used in lvmspec. R = Resolution(camera.get_output_resolution_matrix()) resolution[camera.name] = np.tile(R.to_fits_array(), [args.nspec, 1, 1]) waves[camera.name] = (camera.output_wavelength.to( u.Angstrom).value.astype(np.float32)) nwave = len(waves[camera.name]) maxbin = max(maxbin, len(waves[camera.name])) nobj = np.zeros((nmax, 3, maxbin)) # object photons nsky = np.zeros((nmax, 3, maxbin)) # sky photons nivar = np.zeros((nmax, 3, maxbin)) # inverse variance (object+sky) cframe_observedflux = np.zeros( (nmax, 3, maxbin)) # calibrated object flux cframe_ivar = np.zeros( (nmax, 3, maxbin)) # inverse variance of calibrated object flux cframe_rand_noise = np.zeros( (nmax, 3, maxbin)) # random Gaussian noise to calibrated flux sky_ivar = np.zeros((nmax, 3, maxbin)) # inverse variance of sky sky_rand_noise = np.zeros( (nmax, 3, maxbin)) # random Gaussian noise to sky only frame_rand_noise = np.zeros( (nmax, 3, maxbin)) # random Gaussian noise to nobj+nsky trueflux[camera.name] = np.empty( (args.nspec, nwave)) # calibrated flux noisyflux[camera.name] = np.empty( (args.nspec, nwave)) # observed flux with noise obsivar[camera.name] = np.empty( (args.nspec, nwave)) # inverse variance of flux if args.simspec: dw = np.gradient(simspec.wave[camera.name]) else: sflux = np.empty((args.nspec, npix)) # - Check if input simspec is for a continuum flat lamp instead of science # - This does not convolve to per-fiber resolution if args.simspec: if simspec.flavor == 'flat': log.info("Simulating flat lamp exposure") for i, camera in enumerate(qsim.instrument.cameras): channel = camera.name assert camera.output_wavelength.unit == u.Angstrom num_pixels = len(waves[channel]) dw = np.gradient(simspec.wave[channel]) meanspec = resample_flux( waves[channel], simspec.wave[channel], np.average(simspec.phot[channel] / dw, axis=0)) fiberflat = random_state.normal(loc=1.0, scale=1.0 / np.sqrt(meanspec), size=(nspec, num_pixels)) ivar = np.tile(meanspec, [nspec, 1]) mask = np.zeros((simspec.nspec, num_pixels), dtype=np.uint32) for kk in range((args.nspec + args.nstart - 1) // args.n_fibers + 1): camera = channel + str(kk) outfile = lvmspec.io.findfile('fiberflat', night, expid, camera) start = max(args.n_fibers * kk, args.nstart) end = min(args.n_fibers * (kk + 1), nmax) if (args.spectrograph <= kk): log.info( "Writing files for channel:{}, spectrograph:{}, spectra:{} to {}" .format(channel, kk, start, end)) ff = FiberFlat(waves[channel], fiberflat[start:end, :], ivar[start:end, :], mask[start:end, :], meanspec, header=dict(CAMERA=camera)) write_fiberflat(outfile, ff) filePath = lvmspec.io.findfile("fiberflat", night, expid, camera) log.info("Wrote file {}".format(filePath)) sys.exit(0) # Repeat the simulation for all spectra scale = 1e-17 fluxunits = scale * u.erg / (u.s * u.cm**2 * u.Angstrom) for j in range(args.nspec): thisobjtype = objtype[j] sys.stdout.flush() if flavor == 'arc': qsim.source.update_in('Quickgen source {0}'.format, 'perfect', wavelengths * u.Angstrom, spectra * fluxunits) else: qsim.source.update_in('Quickgen source {0}'.format(j), thisobjtype.lower(), wavelengths * u.Angstrom, spectra[j, :] * fluxunits) qsim.source.update_out() qsim.simulate() qsim.generate_random_noise(random_state) for i, output in enumerate(qsim.camera_output): assert output['observed_flux'].unit == 1e17 * fluxunits # Extract the simulation results needed to create our uncalibrated # frame output file. num_pixels = len(output) nobj[j, i, :num_pixels] = output['num_source_electrons'][:, 0] nsky[j, i, :num_pixels] = output['num_sky_electrons'][:, 0] nivar[j, i, :num_pixels] = 1.0 / output['variance_electrons'][:, 0] # Get results for our flux-calibrated output file. cframe_observedflux[ j, i, :num_pixels] = 1e17 * output['observed_flux'][:, 0] cframe_ivar[ j, i, :num_pixels] = 1e-34 * output['flux_inverse_variance'][:, 0] # Fill brick arrays from the results. camera = output.meta['name'] trueflux[camera][j][:] = 1e17 * output['observed_flux'][:, 0] noisyflux[camera][j][:] = 1e17 * ( output['observed_flux'][:, 0] + output['flux_calibration'][:, 0] * output['random_noise_electrons'][:, 0]) obsivar[camera][j][:] = 1e-34 * output['flux_inverse_variance'][:, 0] # Use the same noise realization in the cframe and frame, without any # additional noise from sky subtraction for now. frame_rand_noise[ j, i, :num_pixels] = output['random_noise_electrons'][:, 0] cframe_rand_noise[j, i, :num_pixels] = 1e17 * ( output['flux_calibration'][:, 0] * output['random_noise_electrons'][:, 0]) # The sky output file represents a model fit to ~40 sky fibers. # We reduce the variance by a factor of 25 to account for this and # give the sky an independent (Gaussian) noise realization. sky_ivar[ j, i, :num_pixels] = 25.0 / (output['variance_electrons'][:, 0] - output['num_source_electrons'][:, 0]) sky_rand_noise[j, i, :num_pixels] = random_state.normal( scale=1.0 / np.sqrt(sky_ivar[j, i, :num_pixels]), size=num_pixels) armName = {"b": 0, "r": 1, "z": 2} for channel in 'brz': # Before writing, convert from counts/bin to counts/A (as in Pixsim output) # Quicksim Default: # FLUX - input spectrum resampled to this binning; no noise added [1e-17 erg/s/cm2/s/Ang] # COUNTS_OBJ - object counts in 0.5 Ang bin # COUNTS_SKY - sky counts in 0.5 Ang bin num_pixels = len(waves[channel]) dwave = np.gradient(waves[channel]) nobj[:, armName[channel], :num_pixels] /= dwave frame_rand_noise[:, armName[channel], :num_pixels] /= dwave nivar[:, armName[channel], :num_pixels] *= dwave**2 nsky[:, armName[channel], :num_pixels] /= dwave sky_rand_noise[:, armName[channel], :num_pixels] /= dwave sky_ivar[:, armName[channel], :num_pixels] /= dwave**2 # Now write the outputs in DESI standard file system. None of the output file can have more than args.n_fibers spectra # Looping over spectrograph for ii in range((args.nspec + args.nstart - 1) // args.n_fibers + 1): start = max(args.n_fibers * ii, args.nstart) # first spectrum for a given spectrograph end = min(args.n_fibers * (ii + 1), nmax) # last spectrum for the spectrograph if (args.spectrograph <= ii): camera = "{}{}".format(channel, ii) log.info( "Writing files for channel:{}, spectrograph:{}, spectra:{} to {}" .format(channel, ii, start, end)) num_pixels = len(waves[channel]) # Write frame file framefileName = lvmspec.io.findfile("frame", night, expid, camera) frame_flux = nobj[start:end, armName[channel], :num_pixels] + \ nsky[start:end, armName[channel], :num_pixels] + \ frame_rand_noise[start:end, armName[channel], :num_pixels] frame_ivar = nivar[start:end, armName[channel], :num_pixels] # required for slicing the resolution metric, resolusion matrix has (nspec, ndiag, wave) # for example if nstart =400, nspec=150: two spectrographs: # 400-499=> 0 spectrograph, 500-549 => 1 sh1 = frame_flux.shape[0] if (args.nstart == start): resol = resolution[channel][:sh1, :, :] else: resol = resolution[channel][-sh1:, :, :] # must create lvmspec.Frame object frame = Frame(waves[channel], frame_flux, frame_ivar, resolution_data=resol, spectrograph=ii, fibermap=fibermap[start:end], meta=dict(CAMERA=camera, FLAVOR=simspec.flavor)) lvmspec.io.write_frame(framefileName, frame) framefilePath = lvmspec.io.findfile("frame", night, expid, camera) log.info("Wrote file {}".format(framefilePath)) if args.frameonly or simspec.flavor == 'arc': continue # Write cframe file cframeFileName = lvmspec.io.findfile("cframe", night, expid, camera) cframeFlux = cframe_observedflux[start:end, armName[channel], :num_pixels] + \ cframe_rand_noise[start:end, armName[channel], :num_pixels] cframeIvar = cframe_ivar[start:end, armName[channel], :num_pixels] # must create lvmspec.Frame object cframe = Frame(waves[channel], cframeFlux, cframeIvar, resolution_data=resol, spectrograph=ii, fibermap=fibermap[start:end], meta=dict(CAMERA=camera, FLAVOR=simspec.flavor)) lvmspec.io.frame.write_frame(cframeFileName, cframe) cframefilePath = lvmspec.io.findfile("cframe", night, expid, camera) log.info("Wrote file {}".format(cframefilePath)) # Write sky file skyfileName = lvmspec.io.findfile("sky", night, expid, camera) skyflux = nsky[start:end, armName[channel], :num_pixels] + \ sky_rand_noise[start:end, armName[channel], :num_pixels] skyivar = sky_ivar[start:end, armName[channel], :num_pixels] skymask = np.zeros(skyflux.shape, dtype=np.uint32) # must create lvmspec.Sky object skymodel = SkyModel(waves[channel], skyflux, skyivar, skymask, header=dict(CAMERA=camera)) lvmspec.io.sky.write_sky(skyfileName, skymodel) skyfilePath = lvmspec.io.findfile("sky", night, expid, camera) log.info("Wrote file {}".format(skyfilePath)) # Write calib file calibVectorFile = lvmspec.io.findfile("calib", night, expid, camera) flux = cframe_observedflux[start:end, armName[channel], :num_pixels] phot = nobj[start:end, armName[channel], :num_pixels] calibration = np.zeros_like(phot) jj = (flux > 0) calibration[jj] = phot[jj] / flux[jj] # - TODO: what should calibivar be? # - For now, model it as the noise of combining ~10 spectra calibivar = 10 / cframe_ivar[start:end, armName[channel], :num_pixels] # mask=(1/calibivar>0).astype(int)?? mask = np.zeros(calibration.shape, dtype=np.uint32) # write flux calibration fluxcalib = FluxCalib(waves[channel], calibration, calibivar, mask) write_flux_calibration(calibVectorFile, fluxcalib) calibfilePath = lvmspec.io.findfile("calib", night, expid, camera) log.info("Wrote file {}".format(calibfilePath))