def test_rotate_around_box_center(size, center, translate, angle1, angle2): axis = [0, 0, 1] q1 = Quaternion(axis=axis, angle=angle1) q2 = Quaternion(axis=axis, angle=angle2) minus_q2 = Quaternion(axis=axis, angle=-q2.angle) original = Box(center=center, size=size, orientation=q1) assert original == (original.copy().rotate_around_box_center( q2).rotate_around_box_center(minus_q2)) assert original == (original.copy().rotate_around_box_center(q2).translate( translate).rotate_around_box_center(minus_q2).translate(-translate))
def transform_box_from_world_to_flat_sensor_coordinates(first_train_sample_box: Box, sample_data_token: str, lyftd: LyftDataset): sample_box = first_train_sample_box.copy() sd_record = lyftd.get("sample_data", sample_data_token) cs_record = lyftd.get("calibrated_sensor", sd_record["calibrated_sensor_token"]) sensor_record = lyftd.get("sensor", cs_record["sensor_token"]) pose_record = lyftd.get("ego_pose", sd_record["ego_pose_token"]) # Move box to ego vehicle coord system parallel to world z plane ypr = Quaternion(pose_record["rotation"]).yaw_pitch_roll yaw = ypr[0] sample_box.translate(-np.array(pose_record["translation"])) sample_box.rotate(Quaternion(scalar=np.cos(yaw / 2), vector=[0, 0, np.sin(yaw / 2)]).inverse) # Move box to sensor vehicle coord system parallel to world z plane # We need to steps, because camera coordinate is x(right), z(front), y(down) inv_ypr = Quaternion(cs_record["rotation"]).inverse.yaw_pitch_roll angz = inv_ypr[0] angx = inv_ypr[2] sample_box.translate(-np.array(cs_record['translation'])) # rotate around z-axis sample_box.rotate(Quaternion(scalar=np.cos(angz / 2), vector=[0, 0, np.sin(angz / 2)])) # rotate around x-axis (by 90 degrees) angx = 90 sample_box.rotate(Quaternion(scalar=np.cos(angx / 2), vector=[np.sin(angx / 2), 0, 0])) return sample_box
def convert_box_to_world_coord(box: Box, sample_token, sensor_type, lyftd: LyftDataset): sample_box = box.copy() sample_record = lyftd.get('sample', sample_token) sample_data_token = sample_record['data'][sensor_type] converted_sample_box = convert_box_to_world_coord_with_sample_data_token(sample_box, sample_data_token) return converted_sample_box
def transform_box_from_world_to_ego_coordinates(first_train_sample_box: Box, sample_data_token: str, lyftd: LyftDataset): sample_box = first_train_sample_box.copy() sd_record = lyftd.get("sample_data", sample_data_token) cs_record = lyftd.get("calibrated_sensor", sd_record["calibrated_sensor_token"]) sensor_record = lyftd.get("sensor", cs_record["sensor_token"]) pose_record = lyftd.get("ego_pose", sd_record["ego_pose_token"]) # Move box to ego vehicle coord system sample_box.translate(-np.array(pose_record["translation"])) sample_box.rotate(Quaternion(pose_record["rotation"]).inverse) return sample_box
def transform_box_from_world_to_flat_vehicle_coordinates(first_train_sample_box: Box, sample_data_token: str, lyftd: LyftDataset): sample_box = first_train_sample_box.copy() sd_record = lyftd.get("sample_data", sample_data_token) cs_record = lyftd.get("calibrated_sensor", sd_record["calibrated_sensor_token"]) sensor_record = lyftd.get("sensor", cs_record["sensor_token"]) pose_record = lyftd.get("ego_pose", sd_record["ego_pose_token"]) # Move box to ego vehicle coord system parallel to world z plane ypr = Quaternion(pose_record["rotation"]).yaw_pitch_roll yaw = ypr[0] sample_box.translate(-np.array(pose_record["translation"])) sample_box.rotate(Quaternion(scalar=np.cos(yaw / 2), vector=[0, 0, np.sin(yaw / 2)]).inverse) return sample_box
def project_kitti_box_to_image( box: Box, p_left: np.ndarray, imsize: Tuple[int, int]) -> Union[None, Tuple[int, int, int, int]]: """Projects 3D box into KITTI image FOV. Args: box: 3D box in KITTI reference frame. p_left: <np.float: 3, 4>. Projection matrix. imsize: (width, height). Image size. Returns: (xmin, ymin, xmax, ymax). Bounding box in image plane or None if box is not in the image. """ # Create a new box. box = box.copy() # KITTI defines the box center as the bottom center of the object. # We use the true center, so we need to adjust half height in negative y direction. box.translate(np.array([0, -box.wlh[2] / 2, 0])) # Check that some corners are inside the image. corners = np.array( [corner for corner in box.corners().T if corner[2] > 0]).T if len(corners) == 0: return None # Project corners that are in front of the camera to 2d to get bbox in pixel coords. imcorners = view_points(corners, p_left, normalize=True)[:2] bbox = (np.min(imcorners[0]), np.min(imcorners[1]), np.max(imcorners[0]), np.max(imcorners[1])) # Crop bbox to prevent it extending outside image. bbox_crop = tuple(max(0, b) for b in bbox) bbox_crop = ( min(imsize[0], bbox_crop[0]), min(imsize[0], bbox_crop[1]), min(imsize[0], bbox_crop[2]), min(imsize[1], bbox_crop[3]), ) # Detect if a cropped box is empty. if bbox_crop[0] >= bbox_crop[2] or bbox_crop[1] >= bbox_crop[3]: return None return bbox_crop
def box_nuscenes_to_kitti( box: Box, velo_to_cam_rot: Quaternion, velo_to_cam_trans: np.ndarray, r0_rect: Quaternion, kitti_to_nu_lidar_inv: Quaternion = Quaternion(axis=(0, 0, 1), angle=np.pi / 2).inverse, ) -> Box: """Transform from nuScenes lidar frame to KITTI reference frame. Args: box: Instance in nuScenes lidar frame. velo_to_cam_rot: Quaternion to rotate from lidar to camera frame. velo_to_cam_trans: <np.float: 3>. Translate from lidar to camera frame. r0_rect: Quaternion to rectify camera frame. kitti_to_nu_lidar_inv: Quaternion to rotate nuScenes to KITTI LIDAR. Returns: Box instance in KITTI reference frame. """ # Copy box to avoid side-effects. box = box.copy() # Rotate to KITTI lidar. box.rotate(kitti_to_nu_lidar_inv) # Transform to KITTI camera. box.rotate(velo_to_cam_rot) box.translate(velo_to_cam_trans) # Rotate to KITTI rectified camera. box.rotate(r0_rect) # KITTI defines the box center as the bottom center of the object. # We use the true center, so we need to adjust half height in y direction. box.translate(np.array([0, box.wlh[2] / 2, 0])) return box
def test_rotate_around_origin_xy(size, angle1, angle2, center): x, y, z = center axis = [0, 0, 1] q1 = Quaternion(axis=axis, angle=angle1) q2 = Quaternion(axis=axis, angle=angle2) minus_q2 = Quaternion(axis=axis, angle=-q2.angle) original = Box(center=(x, y, z), size=size, orientation=q1) assert original == (original.copy().rotate_around_box_center( q2).rotate_around_box_center(minus_q2)) cos_angle2 = q2.rotation_matrix[0, 0] sin_angle2 = q2.rotation_matrix[1, 0] new_center = x * cos_angle2 - y * sin_angle2, x * sin_angle2 + y * cos_angle2, z new_orientation = q1 * q2 target = Box(center=new_center, size=size, orientation=new_orientation) assert original.rotate_around_origin(q2) == target