def test_vcl_returning_for_boston_linear_regression(self): boston = load_boston() X, y = boston.data, boston.target estimator = LinearRegression() estimator.fit(X, y) self.assertNotEqual(m2vcl.export_to_vcl(estimator), "")
def test_vcl_returning_for_nusvr(self): n_samples, n_features = 10, 5 np.random.seed(0) y = np.random.randn(n_samples) X = np.random.randn(n_samples, n_features) regr = NuSVR(C=1.0, nu=0.1) regr.fit(X, y) self.assertNotEqual(m2vcl.export_to_vcl(regr), "")
def test_vcl_returning_for_iris_decision_tree(self): iris = load_iris() X = iris.data y = iris.target X_train, X_test, y_train, y_test = train_test_split( X, y, random_state=0) clf = DecisionTreeClassifier(max_leaf_nodes=3, random_state=0) clf.fit(X_train, y_train) self.assertNotEqual(m2vcl.export_to_vcl(clf), "")
from sklearn.model_selection import train_test_split from sklearn.datasets import load_iris from sklearn.tree import DecisionTreeClassifier import m2vcl iris = load_iris() X = iris.data y = iris.target X_train, X_test, y_train, y_test = train_test_split( X, y, random_state=0) clf = DecisionTreeClassifier(max_leaf_nodes=3, random_state=0) clf.fit(X_train, y_train) print(m2vcl.export_to_vcl(clf))
from sklearn.datasets import load_boston from sklearn.linear_model import LinearRegression import m2vcl boston = load_boston() X, y = boston.data, boston.target estimator = LinearRegression() estimator.fit(X, y) print(m2vcl.export_to_vcl(estimator))