Esempio n. 1
0
     demand_level = q0t[q0]
     for solar_index in range(len(availability_levels_solar)):##4 levels of solar availability.
         avail_solar = availability_levels_solar[solar_index]
         for wind_index in range(len(availability_levels_wind)):
             avail_wind = availability_levels_wind[wind_index]
             allocated_hours = q0_hr_slice[q0][solar_index][wind_index] ##  hours in current slice.
             # =======================================================
             #print('\n' +'-----new slice: '+ str(allocated_hours) + '(hours)----- ')
             
             #print('the demand reference q0 is: ' + str(demand_level))
             #print('The availability of solar is : ' + str (avail_solar))
             #print('The availability of wind is : ' + str (avail_wind))
             # ~ print(df_pp)    
             df_pp['capacity_available_KW'] = df_pp.apply(lambda row: fun_availability(row.plant_type,avail_solar,avail_wind),axis=1) * df_pp.capacity
             
             ranked_dispatch = fun_rank_dispatch(df_pp)
             
             eq_production,eq_price,last_supply_type,last_supply_percent = fun_demand_supply(df_pp,ranked_dispatch,demand_level)
             df_pp['utilization'] = df_pp.apply(lambda row: fun_pp_utilization(row.marginal_cost,last_supply_percent,eq_price),axis=1)
             df_pp['dispatched_KWHs'] = df_pp.utilization * df_pp.capacity_available_KW * allocated_hours
             #print(df_pp_pi)
             df_pp['dispatched_yr'] += df_pp.dispatched_KWHs
                             
           
             continue
         continue
     continue     
 yr_dispatch =  df_pp[['plant_type','dispatched_yr']].set_index('plant_type')
 
             
 dispatched_yr_series[str(year)] = pd.concat([yr_dispatch], axis=1, sort=False)
Esempio n. 2
0
def fun_decision_making(df_pp, carbon_tax, r):

    # ~ candidate_pp = pd.DataFrame(columns = ['name','plant_type','capacity','running_cost','investment_cost','total_lifetime','lifetime_remain','emission_intensity','profit_index'])
    candidate_pp = {
        'CN_baseload': 0,
        'coal': 0,
        'gas': 0,
        'solar': 0,
        'wind': 0
    }  ## set NPV default value as 0.

    for pp in pp_choice.values():  ##investgate each type of plant.
        new_pp = deepcopy(pp)  ##set up new df for new pp.
        new_pp[
            'marginal_cost'] = new_pp.running_cost + carbon_tax * new_pp.emission_intensity
        # =============================================================================

        ##copy the current supply system df.
        df_pp_new = deepcopy(df_pp)
        ##group the pp by plant type.
        df_pp_grouped = df_pp_new.groupby('plant_type', as_index=False).agg({
            'capacity':
            'sum',
            'marginal_cost':
            'mean',
            'emission_intensity':
            'mean'
        })

        mask = df_pp_grouped.plant_type == new_pp.plant_type.item(
        )  ##condition.
        ## add capacity of the new_pp to existing df.
        df_pp_grouped.loc[mask, 'capacity'] += new_pp.capacity.item()

        # =============================================================================
        ##check whether biofuel is available.
        if biomass in fuel_list:
            if df_pp_grouped.loc[
                    df_pp_grouped.plant_type ==
                    'gas'].marginal_cost.values > biomass.running_cost:  ##if marginal cost of natural gas(default) is bigger than biomass.
                index_gas = df_pp_grouped.loc[df_pp_grouped.plant_type ==
                                              'gas'].index
                df_pp_grouped.at[
                    index_gas,
                    'marginal_cost'] = biomass.running_cost  ## switch to biomass.

            if new_pp.plant_type.item() == 'gas' and new_pp.marginal_cost.item(
            ) > biomass.running_cost:  ## replace natural gas with biogas
                new_pp['marginal_cost'] = biomass.running_cost
        # =============================================================================
        ##calculate for each time slice:
        acc_profit_year = 0  ##accumulative profit.

        for slice_nr in range(64):  ##length is 4, loop through.
            demand_level = demand_64[slice_nr]
            avail_solar = solar_level[slice_nr]
            avail_wind = wind_level[slice_nr]
            allocated_hours = slice_hrs[slice_nr]  ##  hours in current slice.
            # =======================================================
            #           print('\n' +'-----new slice: '+ str(allocated_hours) + '(hours)----- ')
            #           print('\n' +'-----the slice is: '+ str(time_slice))
            #
            #           print('the demand reference q0 is: ' + str(demand_level))
            #           print('The availability of solar is : ' + str (avail_solar))
            #           print('The availability of wind is : ' + str (avail_wind))
            # =========================================================
            #            df_pp_grouped['capacity_available_KW'] = df_pp_grouped.apply(lambda row:
            #            fun_availability(row.plant_type,avail_solar,avail_wind), axis=1) * df_pp_grouped.capacity
            availability_index = [1, 1, 1, avail_solar,
                                  avail_wind]  ##CN,coal,gas,solar,wind.

            df_pp_grouped[
                'capacity_available_KW'] = df_pp_grouped.capacity * availability_index

            new_pp['capacity_available_KW'] = fun_availability(
                new_pp.plant_type.item(), avail_solar,
                avail_wind) * new_pp.capacity.item()

            ranked_dispatch = fun_rank_dispatch(df_pp_grouped)
            eq_production, eq_price, last_supply_type, last_supply_percent = fun_demand_supply(
                df_pp_grouped, ranked_dispatch, demand_level)

            new_pp['utilization'] = fun_pp_utilization(
                new_pp.marginal_cost.item(), last_supply_percent, eq_price)

            ##dispatched_KW = pp_utilization * capacity_avail
            new_pp[
                'dispatched_KW'] = new_pp.utilization * new_pp.capacity_available_KW

            new_pp['hr_profit'] = new_pp.dispatched_KW * (
                eq_price - new_pp.marginal_cost.item())
            new_pp['slice_profit'] = new_pp['hr_profit'] * allocated_hours

            # ~ if new_pp.plant_type.item() == 'solar' and avail_solar == 0: ##in this case, solar is not in the df.
            # ~ new_plant_slice_profit = 0
            #else:
            #new_plant_slice_profit = new_pp['slice_profit']
            #print('***//////')
            #print(new_plant_slice_profit)

            acc_profit_year += new_pp['slice_profit'].item(
            )  ##accumulate profit from all time-slices.
            # ~ print('\n' + 'The slice_profit_new_plant is : ' + str (new_plant.slice_profit))
            continue

        # =============================================================================
        ##calculate NPV: geometric sequence summation.
        NPV_profit = acc_profit_year * (
            1 - (1 - r)
            **new_pp.total_lifetime.item()) / r - new_pp.investment_cost.item(
            ) * new_pp.capacity.item()  ##NPV minus investment_cost
        # ~ print('the acc_profit_year of this new ' + str(new_pp.plant_type.item())+ ' is ' + str(NPV_profit))
        if NPV_profit > 0:
            lifetime = new_pp.total_lifetime.item()
            CRF_pp = r * (1 + r)**lifetime / ((1 + r)**lifetime - 1)
            # ~ print(CRF_pp)
            profit_index = CRF_pp * NPV_profit / (
                new_pp.investment_cost.item() * new_pp.capacity.item())
            # ~ print('the profit_index of this new ' + str(new_pp.plant_type.item())+ ' is ' + str(profit_index))
            # ~ pdb.set_trace()

            # ~ candidate_pp = candidate_pp.append(new_pp,sort=False) ##time= 0.001
            candidate_pp[new_pp.plant_type.item()] = profit_index
            #print('the NPV_profit and profit_index of this new ' + str(name_new)+ ' plant are ')
            #print(NPV_profit,profit_index)

#        else:
#            print('It is not profitable to invest in ' + str(name_new)+ ' plant.')
# =============================================================================
    top_pp = max(candidate_pp, key=lambda key: candidate_pp[key]
                 )  ##return the key with highest value(NPV).
    if candidate_pp[top_pp] == 0:  ##NPV is zero.
        invest_made = None
    else:
        invest_made = pp_choice[top_pp]

    return invest_made
def fun_decision_making(ts, rounds, df_pp, carbon_tax):
    print('--------investment process.------------')
    # ~ candidate_pp = pd.DataFrame(columns = ['name','plant_type','capacity','running_cost','investment_cost','total_lifetime','lifetime_remain','emission_intensity','profit_index'])
    candidate_pp = {
        'CN_baseload': 0,
        'coal': 0,
        'gas': 0,
        'solar': 0,
        'wind': 0
    }  ## set NPV default value as 0.

    for new_pp in pp_choice.values():  ##investgate each type of plant.

        acc_profit_year = 0
        # =============================================================================
        ##set up new df for new pp.
        #        name_new = str(pp_new.plant_type) +'_t'+str(ts) +'_r'+ str(rounds)##name the plant (unique).
        #        type_new = pp_new.plant_type
        #        capacity_new = pp_new.capacity
        #        running_cost_new = pp_new.running_cost
        #        investment_cost_new = pp_new.investment_cost
        #        tot_life_new = pp_new.lifetime
        #
        #        life_remain_new = pp_new.lifetime
        #        emission_new = pp_new.emission_intensity
        #        marginal_cost_new = pp_new.running_cost + carbon_tax * pp_new.emission_intensity

        #        new_pp_params = [name_new,pp_new.plant_type,pp_new.capacity,pp_new.running_cost,pp_new.investment_cost,
        #                            pp_new.lifetime,pp_new.lifetime,pp_new.emission_intensity,marginal_cost_new]

        new_pp[
            'marginal_cost'] = new_pp.running_cost + carbon_tax * new_pp.emission_intensity
        # ~ if new_pp.plant_type.item() == 'gas' and  new_pp.marginal_cost.item()> biomass.running_cost: ## replace natural gas with biogas.
        # ~ new_pp['marginal_cost'] = biomass.running_cost

        #        new_pp = pd.DataFrame([new_pp_params],columns=df_pp.columns)

        ##copy the current energy system df.
        df_pp_new = deepcopy(df_pp)
        ##append new pp to df.
        #        df_pp_new = df_pp_new.append(new_pp,ignore_index=True,sort=True)## append new pp to df.

        # ~ print(df_pp_new[['plant_type','lifetime_remain']])

        #    print(system_pp_new)
        df_pp_grouped = df_pp_new.groupby('plant_type', as_index=False).agg({
            'capacity':
            'sum',
            'marginal_cost':
            'mean',
            'emission_intensity':
            'mean'
        })

        mask = df_pp_grouped.plant_type == new_pp.plant_type.item(
        )  ##condition.
        ## add capacity of the new_pp to existing df.
        df_pp_grouped.loc[mask, 'capacity'] += new_pp.capacity.item()

        # ~ if df_pp_grouped.loc[df_pp_grouped.plant_type == 'gas'].marginal_cost.values>biomass.running_cost: ##if marginal cost of natural gas(default) is bigger than biomass.
        # ~ index_gas = df_pp_grouped.loc[df_pp_grouped.plant_type == 'gas'].index
        # ~ df_pp_grouped.at[index_gas, 'marginal_cost'] = biomass.running_cost## switch to biomass.

        # =============================================================================
        ##calculate for each time slice:

        for slice_nr in range(64):  ##length is 4, loop through.
            demand_level = demand_64[slice_nr]
            avail_solar = solar_level[slice_nr]
            avail_wind = wind_level[slice_nr]
            allocated_hours = slice_hrs[slice_nr]  ##  hours in current slice.
            # =======================================================
            #           print('\n' +'-----new slice: '+ str(allocated_hours) + '(hours)----- ')
            #           print('\n' +'-----the slice is: '+ str(time_slice))
            #
            #           print('the demand reference q0 is: ' + str(demand_level))
            #           print('The availability of solar is : ' + str (avail_solar))
            #           print('The availability of wind is : ' + str (avail_wind))
            # =========================================================

            #                    t1_start = time.perf_counter()
            #                    print(df_pp_new[['plant_type','capacity']])
            df_pp_grouped['capacity_available_KW'] = df_pp_grouped.apply(
                lambda row: fun_availability(row.plant_type, avail_solar,
                                             avail_wind),
                axis=1) * df_pp_grouped.capacity
            # ~ availability_index = [1,1,1,avail_solar,avail_wind] ##CN,coal,gas,solar,wind.
            # ~ print(df_pp_grouped)
            # ~ df_pp_grouped['capacity_available_KW'] = df_pp_grouped.capacity * availability_index

            new_pp['capacity_available_KW'] = fun_availability(
                new_pp.plant_type.item(), avail_solar,
                avail_wind) * new_pp.capacity.item()

            ranked_dispatch = fun_rank_dispatch(df_pp_grouped)
            eq_production, eq_price, last_supply_type, last_supply_percent = fun_demand_supply(
                df_pp_grouped, ranked_dispatch, demand_level)

            new_pp['utilization'] = fun_pp_utilization(
                new_pp.marginal_cost.item(), last_supply_percent, eq_price)

            #dispatched_KW = pp_utilization * capacit_avail
            new_pp[
                'dispatched_KW'] = new_pp.utilization * new_pp.capacity_available_KW

            new_pp['hr_profit'] = new_pp.dispatched_KW * (
                eq_price - new_pp.marginal_cost.item())
            new_pp['slice_profit'] = new_pp['hr_profit'] * allocated_hours

            if new_pp.plant_type.item(
            ) == 'solar' and avail_solar == 0:  ##in this case, solar is not in the df.
                new_plant_slice_profit = 0
            #else:
            #new_plant_slice_profit = new_pp['slice_profit']
            #print('***//////')
            #print(new_plant_slice_profit)

            acc_profit_year += new_pp['slice_profit'].item(
            )  ##accumulate profit from all time-slices.

            # =============================================================================

            # ~ print('\n' + 'The slice_profit_new_plant is : ' + str (new_plant_slice_profit))
            continue

        #df_pp_grouped['capacity'].loc[df_pp_grouped.plant_type==type_new]-= capacity_new
        ##NPV: geometric sequence summation.
        NPV_profit = acc_profit_year * (
            1 - (1 - r)
            **new_pp.total_lifetime.item()) / r - new_pp.investment_cost.item(
            ) * new_pp.capacity.item()  ##NPV minus investment_cost
        # ~ print('the acc_profit_year of this new ' + str(new_pp.plant_type.item())+ ' is ' + str(NPV_profit))
        if NPV_profit > 0:
            CRF_pp = CRF[new_pp.plant_type.item()]
            profit_index = CRF_pp * NPV_profit / (
                new_pp.investment_cost.item() * new_pp.capacity.item())
            # ~ print('the profit_index of this new ' + str(new_pp.plant_type.item())+ ' is ' + str(profit_index))

            # ~ new_pp['profit_index'] = profit_index## define profit index.

            # ~ candidate_pp = candidate_pp.append(new_pp,sort=False) ##time= 0.001
            candidate_pp[new_pp.plant_type.item()] = profit_index
            #print('the NPV_profit and profit_index of this new ' + str(name_new)+ ' plant are ')
            #print(NPV_profit,profit_index)

#        else:
#            print('It is not profitable to invest in ' + str(name_new)+ ' plant.')
# =============================================================================
    top_pp = max(candidate_pp, key=lambda key: candidate_pp[key]
                 )  ##return the key with highest value(NPV).
    if candidate_pp[top_pp] == 0:
        invest_made = None
    else:
        invest_made = pp_choice[top_pp]
    # ~ if candidate_pp.empty == False:

    # ~ candidate_pp.sort_values(by=['profit_index'], axis=0, ascending=False, inplace=True)  ## rank candidates by NPV profit.
    # ~ candidate_pp.reset_index(drop=True,inplace=True)

    # ~ invest_made = candidate_pp.iloc[0][['name','plant_type','capacity',
    # ~ 'running_cost','investment_cost','total_lifetime','lifetime_remain','emission_intensity']]## select the first row-plant with the highest profit index.
# ~ #        print(invest_made)

# ~ else:
# ~ invest_made = None
#   print('One ' + str(invest_made) + ' is invested by ' + ' company ' + '.')

#
    return invest_made