Esempio n. 1
0
    def __init__(self, args=None):
        self.env = None
        self.sampler = None
        self.experiment = None
        self.c_level = None
        self.pol = None

        if args is None:
            args = ArgsFromFile(self.default_args)
        self.args = args

        assert args.mirror in [False, "old", "new", "tuple"]

        if args.mirror == "old":
            args.mirror = True

        args.mirror_tuples = args.mirror == "tuple"

        self.env_kwargs = copy.deepcopy(getattr(self.args, "env_kwargs", {}))

        device_name = "cpu" if args.cuda < 0 else "cuda:{}".format(args.cuda)
        set_device(th.device(device_name))

        self.num_updates = (int(args.num_total_frames) // args.num_steps //
                            args.num_processes)

        self.seed_torch(args.seed)

        self.setup_env()

        if args.render or args.evaluate:
            self.load_save(args.env, "last")
        else:
            if hasattr(args, "load_path"):
                self.load_save(args.env, "last")
            else:
                self.setup_nets()
            self.setup_optims()
            self.setup_experiment()
Esempio n. 2
0
with open(os.path.join(args.log, 'args.json'), 'w') as f:
    json.dump(vars(args), f)
pprint(vars(args))

# modelの保存場所確保
if not os.path.exists(os.path.join(args.log, 'models')):
    os.mkdir(os.path.join(args.log, 'models'))

# 乱数の種固定
np.random.seed(args.seed)
torch.manual_seed(args.seed)

# GPU or CPU
device_name = 'cpu' if args.cuda < 0 else "cuda:{}".format(args.cuda)
device = torch.device(device_name)
set_device(device)

# logのcsvファイル確保
score_file = os.path.join(args.log, 'progress.csv')
logger.add_tabular_output(score_file)

# Gymのenviromentを生成
from pybullet_envs.bullet.kukaCamGymEnv import KukaCamGymEnv
env = KukaCamGymEnv(renders=False,
                    isDiscrete=False)  # renders=Trueだとmachinaのtrain進まない。相性が悪い?
env = FlattenedObservationWrapper(env)
flattend_observation_space = env.flattend_observation_space

env = GymEnv(env,
             log_dir=os.path.join(args.log, 'movie'),
             record_video=args.record)