Esempio n. 1
0
    def __init__(self,
                 expt_dir='experiment',
                 loss=[NLLLoss()],
                 loss_weights=None,
                 metrics=[],
                 batch_size=64,
                 eval_batch_size=128,
                 random_seed=None,
                 checkpoint_every=100,
                 print_every=100):
        self._trainer = "Simple Trainer"
        self.random_seed = random_seed
        if random_seed is not None:
            random.seed(random_seed)
            torch.manual_seed(random_seed)
        k = NLLLoss()
        self.loss = loss
        self.metrics = metrics
        self.loss_weights = loss_weights or len(loss) * [1.]
        self.evaluator = Evaluator(loss=self.loss,
                                   metrics=self.metrics,
                                   batch_size=eval_batch_size)
        self.optimizer = None
        self.checkpoint_every = checkpoint_every
        self.print_every = print_every

        if not os.path.isabs(expt_dir):
            expt_dir = os.path.join(os.getcwd(), expt_dir)
        self.expt_dir = expt_dir
        if not os.path.exists(self.expt_dir):
            os.makedirs(self.expt_dir)
        self.batch_size = batch_size

        self.logger = logging.getLogger(__name__)
Esempio n. 2
0
    def set_local_parameters(self, random_seed, losses, metrics,
                             loss_weights, checkpoint_every, print_every):
        self.random_seed = random_seed
        if random_seed is not None:
            random.seed(random_seed)
            torch.manual_seed(random_seed)

        self.losses = losses
        self.metrics = metrics
        self.loss_weights = loss_weights or len(losses)*[1.]
        self.evaluator = Evaluator(loss=self.losses, metrics=self.metrics)
        self.optimizer = None
        self.checkpoint_every = checkpoint_every
        self.print_every = print_every
        self.logger = logging.getLogger(__name__)
        self._stop_training = False
Esempio n. 3
0
    def test_set_eval_mode(self, mock_eval, mock_call):
        """ Make sure that evaluation is done in evaluation mode. """
        mock_mgr = MagicMock()
        mock_mgr.attach_mock(mock_eval, 'eval')
        mock_mgr.attach_mock(mock_call, 'call')

        evaluator = Evaluator(batch_size=64)
        with patch('machine.evaluator.evaluator.torch.stack', return_value=None), \
             patch('machine.metrics.WordAccuracy.eval_batch', return_value=None), \
             patch('machine.metrics.WordAccuracy.eval_batch', return_value=None), \
             patch('machine.loss.NLLLoss.eval_batch', return_value=None):
            evaluator.evaluate(self.seq2seq, self.dataset, trainer.get_batch_data)

        num_batches = int(math.ceil(len(self.dataset) / evaluator.batch_size))
        expected_calls = [call.eval()] + num_batches * [call.call(ANY, ANY, ANY)]
        self.assertEquals(expected_calls, mock_mgr.mock_calls)
Esempio n. 4
0
metrics = [
    WordAccuracy(ignore_index=pad),
    SequenceAccuracy(ignore_index=pad),
    FinalTargetAccuracy(ignore_index=pad, eos_id=tgt.eos_id)
]
# Since we need the actual tokens to determine k-grammar accuracy,
# we also provide the input and output vocab and relevant special symbols
# metrics.append(SymbolRewritingAccuracy(
#     input_vocab=input_vocab,
#     output_vocab=output_vocab,
#     use_output_eos=output_eos_used,
#     input_pad_symbol=src.pad_token,
#     output_sos_symbol=tgt.SYM_SOS,
#     output_pad_symbol=tgt.pad_token,
#     output_eos_symbol=tgt.SYM_EOS,
#     output_unk_symbol=tgt.unk_token))

data_func = SupervisedTrainer.get_batch_data

#################################################################################
# Evaluate model on test set

evaluator = Evaluator(batch_size=opt.batch_size, loss=losses, metrics=metrics)
losses, metrics = evaluator.evaluate(model=seq2seq,
                                     data=test,
                                     get_batch_data=data_func)

total_loss, log_msg, _ = SupervisedTrainer.get_losses(losses, metrics, 0)

logging.info(log_msg)
Esempio n. 5
0
def len_filter(example):
    return len(example.src) <= max_len and len(example.tgt) <= max_len


# generate test set
test = torchtext.data.TabularDataset(path=opt.test_data,
                                     format='tsv',
                                     fields=[('src', src), ('tgt', tgt)],
                                     filter_pred=len_filter)

# Prepare loss
weight = torch.ones(len(output_vocab))
pad = output_vocab.stoi[tgt.pad_token]
loss = NLLLoss(pad)
metrics = [WordAccuracy(pad), SequenceAccuracy(pad)]
if torch.cuda.is_available():
    loss.cuda()

#################################################################################
# Evaluate model on test set

evaluator = Evaluator(loss=[loss], metrics=metrics, batch_size=opt.batch_size)
losses, metrics = evaluator.evaluate(seq2seq, test,
                                     SupervisedTrainer.get_batch_data)

print([
    "{}: {:6f}".format(type(metric).__name__, metric.get_val())
    for metric in metrics
])
Esempio n. 6
0
class SupervisedTrainer(object):
    """ The SupervisedTrainer class helps in setting up a training framework in a
    supervised setting.

    Args:
        expt_dir (optional, str): experiment Directory to store details of the experiment,
            by default it makes a folder in the current directory to store the details (default: `experiment`).
    """

    def __init__(self, expt_dir='experiment'):
        self._trainer = "Simple Trainer"

        if not os.path.isabs(expt_dir):
            expt_dir = os.path.join(os.getcwd(), expt_dir)
        self.expt_dir = expt_dir
        if not os.path.exists(self.expt_dir):
            os.makedirs(self.expt_dir)

    def set_local_parameters(self, random_seed, losses, metrics,
                             loss_weights, checkpoint_every, print_every):
        self.random_seed = random_seed
        if random_seed is not None:
            random.seed(random_seed)
            torch.manual_seed(random_seed)

        self.losses = losses
        self.metrics = metrics
        self.loss_weights = loss_weights or len(losses)*[1.]
        self.evaluator = Evaluator(loss=self.losses, metrics=self.metrics)
        self.optimizer = None
        self.checkpoint_every = checkpoint_every
        self.print_every = print_every
        self.logger = logging.getLogger(__name__)
        self._stop_training = False

    def _train_batch(self, input_variable, input_lengths, target_variable, teacher_forcing_ratio):
        loss = self.losses

        # Forward propagation
        decoder_outputs, decoder_hidden, other = self.model(
            input_variable, input_lengths, target_variable, teacher_forcing_ratio=teacher_forcing_ratio)

        losses = self.evaluator.compute_batch_loss(
            decoder_outputs, decoder_hidden, other, target_variable)

        # Backward propagation
        for i, loss in enumerate(losses, 0):
            loss.scale_loss(self.loss_weights[i])
            loss.backward(retain_graph=True)
        self.optimizer.step()
        self.model.zero_grad()

        return losses

    def _train_epoches(self, data, n_epochs,
                       start_epoch, start_step,
                       callbacks,
                       dev_data, monitor_data=[],
                       teacher_forcing_ratio=0):

        steps_per_epoch = len(data)
        total_steps = steps_per_epoch * n_epochs

        # give start information to callbacks
        callbacks.set_info(start_step, start_epoch,
                           steps_per_epoch,
                           total_steps)

        # set data as attribute to trainer
        self.train_data = data
        self.val_data = dev_data
        self.monitor_data = monitor_data

        # ########################################
        # This is used to resume training from same place in dataset
        # after loading from checkpoint
        s = start_step
        if start_epoch > 1:
            s -= (start_epoch - 1) * steps_per_epoch

        ########################################

        # Call all callbacks
        callbacks.on_train_begin()
        for epoch in range(start_epoch, n_epochs + 1):

            callbacks.on_epoch_begin(epoch)

            self.model.train()
            for batch in data:

                # Skip over the batches that are below start step
                if epoch == start_epoch and s > 0:
                    s -= 1
                    continue

                callbacks.on_batch_begin(batch)

                input_variables, input_lengths, target_variables = self.get_batch_data(
                    batch)

                self.batch_losses = self._train_batch(input_variables,
                                                      input_lengths,
                                                      target_variables,
                                                      teacher_forcing_ratio)
                callbacks.on_batch_end(batch)

            callbacks.on_epoch_end(epoch)

            # Stop training early if flag _stop_training is True
            if self._stop_training:
                break

        logs = callbacks.on_train_end()
        return logs

    def train(self, model, data,
              dev_data,
              num_epochs=5,
              resume_training=False,
              monitor_data={},
              optimizer=None,
              teacher_forcing_ratio=0,
              custom_callbacks=[],
              learning_rate=0.001,
              checkpoint_path=None,
              top_k=5,
              losses=[NLLLoss()],
              loss_weights=None,
              metrics=[],
              random_seed=None,
              checkpoint_every=100,
              print_every=100):
        """ Run training for a given model.

        Args:
            model (machine.models): model to run training on, if `resume=True`, it would be
               overwritten by the model loaded from the latest checkpoint.
            data (torchtext.data.Iterator: torchtext iterator object to train on
            num_epochs (int, optional): number of epochs to run (default 5)
            resume_training(bool, optional): resume training with the latest checkpoint up until the number of epochs (default False)
            dev_data (torchtext.data.Iterator): dev/validation set iterator
                Note: must not pass in the train iterator here as this gets evaluated during training (in between batches)
                If you want to evaluate on the full train during training then make two iterators and pass the second one here
            monitor_data (list of torchtext.data.Iterator, optional): list of iterators to test on (default None)
                Note: must not pass in the train iterator here as this gets evaluated during training (in between batches)
                      If you want to evaluate on the full train during training then make two iterators and pass the second one here
            optimizer (machine.optim.Optimizer, optional): optimizer for training
               (default: Optimizer(pytorch.optim.Adam, max_grad_norm=5))
            teacher_forcing_ratio (float, optional): teaching forcing ratio (default 0)
            custom_callbacks (list, optional): list of custom call backs (see utils.callbacks.callback for base class)
            learing_rate (float, optional): learning rate used by the optimizer (default 0.001)
            checkpoint_path (str, optional): path to load checkpoint from in case training should be resumed
            top_k (int): how many models should be stored during training
            loss (list, optional): list of machine.loss.Loss objects for training (default: [machine.loss.NLLLoss])
            metrics (list, optional): list of machine.metric.metric objects to be computed during evaluation
            checkpoint_every (int, optional): number of epochs to checkpoint after, (default: 100)
            print_every (int, optional): number of iterations to print after, (default: 100)
        Returns:
            model (machine.models): trained model.
        """
        self.set_local_parameters(random_seed, losses, metrics,
                                  loss_weights, checkpoint_every, print_every)
        # If training is set to resume
        if resume_training:
            resume_checkpoint = Checkpoint.load(checkpoint_path)
            model = resume_checkpoint.model
            self.model = model
            self.optimizer = resume_checkpoint.optimizer

            # A walk around to set optimizing parameters properly
            resume_optim = self.optimizer.optimizer
            defaults = resume_optim.param_groups[0]
            defaults.pop('params', None)
            defaults.pop('initial_lr', None)
            self.optimizer.optimizer = resume_optim.__class__(
                self.model.parameters(), **defaults)

            start_epoch = resume_checkpoint.epoch
            step = resume_checkpoint.step

        else:
            start_epoch = 1
            step = 0
            self.model = model

            def get_optim(optim_name):
                optims = {'adam': optim.Adam, 'adagrad': optim.Adagrad,
                          'adadelta': optim.Adadelta, 'adamax': optim.Adamax,
                          'rmsprop': optim.RMSprop, 'sgd': optim.SGD,
                          None: optim.Adam}
                return optims[optim_name]

            self.optimizer = Optimizer(get_optim(optimizer)(self.model.parameters(),
                                                            lr=learning_rate),
                                       max_grad_norm=5)

        self.logger.info("Optimizer: %s, Scheduler: %s" %
                         (self.optimizer.optimizer, self.optimizer.scheduler))

        callbacks = CallbackContainer(self,
                                      [Logger(),
                                       ModelCheckpoint(top_k=top_k),
                                       History()] + custom_callbacks)

        logs = self._train_epoches(data, num_epochs,
                                   start_epoch, step, dev_data=dev_data,
                                   monitor_data=monitor_data,
                                   callbacks=callbacks,
                                   teacher_forcing_ratio=teacher_forcing_ratio)

        return self.model, logs

    @staticmethod
    def get_batch_data(batch):
        # TODO Maybe move this method / or make optional - this is seq2seq specific
        input_variables, input_lengths = getattr(batch, machine.src_field_name)
        target_variables = {'decoder_output': getattr(batch, machine.tgt_field_name),
                            'encoder_input': input_variables}  # The k-grammar metric needs to have access to the inputs

        return input_variables, input_lengths, target_variables
Esempio n. 7
0
    loss.to(device)

metrics = [
    WordAccuracy(ignore_index=pad),
    SequenceAccuracy(ignore_index=pad),
    FinalTargetAccuracy(ignore_index=pad, eos_id=tgt.eos_id)
]
# Since we need the actual tokens to determine k-grammar accuracy,
# we also provide the input and output vocab and relevant special symbols
# metrics.append(SymbolRewritingAccuracy(
#     input_vocab=input_vocab,
#     output_vocab=output_vocab,
#     use_output_eos=output_eos_used,
#     input_pad_symbol=src.pad_token,
#     output_sos_symbol=tgt.SYM_SOS,
#     output_pad_symbol=tgt.pad_token,
#     output_eos_symbol=tgt.SYM_EOS,
#     output_unk_symbol=tgt.unk_token))

data_func = SupervisedTrainer.get_batch_data

##########################################################################
# Evaluate model on test set

evaluator = Evaluator(loss=losses, metrics=metrics)
losses, metrics = evaluator.evaluate(seq2seq, test_iterator, data_func)

total_loss, log_msg, _ = Callback.get_losses(losses, metrics, 0)

logging.info(log_msg)
Esempio n. 8
0
class SupervisedTrainer(object):
    """ The SupervisedTrainer class helps in setting up a training framework in a
    supervised setting.

    Args:
        expt_dir (optional, str): experiment Directory to store details of the experiment,
            by default it makes a folder in the current directory to store the details (default: `experiment`).
        loss (list, optional): list of machine.loss.Loss objects for training (default: [machine.loss.NLLLoss])
        metrics (list, optional): list of machine.metric.metric objects to be computed during evaluation
        batch_size (int, optional): batch size for experiment, (default: 64)
        checkpoint_every (int, optional): number of epochs to checkpoint after, (default: 100)
        print_every (int, optional): number of iterations to print after, (default: 100)
    """
    def __init__(self,
                 expt_dir='experiment',
                 loss=[NLLLoss()],
                 loss_weights=None,
                 metrics=[],
                 batch_size=64,
                 eval_batch_size=128,
                 random_seed=None,
                 checkpoint_every=100,
                 print_every=100):
        self._trainer = "Simple Trainer"
        self.random_seed = random_seed
        if random_seed is not None:
            random.seed(random_seed)
            torch.manual_seed(random_seed)
        k = NLLLoss()
        self.loss = loss
        self.metrics = metrics
        self.loss_weights = loss_weights or len(loss) * [1.]
        self.evaluator = Evaluator(loss=self.loss,
                                   metrics=self.metrics,
                                   batch_size=eval_batch_size)
        self.optimizer = None
        self.checkpoint_every = checkpoint_every
        self.print_every = print_every

        if not os.path.isabs(expt_dir):
            expt_dir = os.path.join(os.getcwd(), expt_dir)
        self.expt_dir = expt_dir
        if not os.path.exists(self.expt_dir):
            os.makedirs(self.expt_dir)
        self.batch_size = batch_size

        self.logger = logging.getLogger(__name__)

    def _train_batch(self, input_variable, input_lengths, target_variable,
                     model, teacher_forcing_ratio):
        loss = self.loss

        # Forward propagation
        decoder_outputs, decoder_hidden, other = model(
            input_variable,
            input_lengths,
            target_variable,
            teacher_forcing_ratio=teacher_forcing_ratio)

        losses = self.evaluator.compute_batch_loss(decoder_outputs,
                                                   decoder_hidden, other,
                                                   target_variable)

        # Backward propagation
        for i, loss in enumerate(losses, 0):
            loss.scale_loss(self.loss_weights[i])
            loss.backward(retain_graph=True)
        self.optimizer.step()
        model.zero_grad()

        return losses

    def _train_epoches(self,
                       data,
                       model,
                       n_epochs,
                       start_epoch,
                       start_step,
                       dev_data=None,
                       monitor_data=[],
                       teacher_forcing_ratio=0,
                       top_k=5):
        log = self.logger

        print_loss_total = defaultdict(float)  # Reset every print_every
        epoch_loss_total = defaultdict(float)  # Reset every epoch
        epoch_loss_avg = defaultdict(float)
        print_loss_avg = defaultdict(float)

        iterator_device = torch.cuda.current_device(
        ) if torch.cuda.is_available() else -1
        batch_iterator = torchtext.data.BucketIterator(
            dataset=data,
            batch_size=self.batch_size,
            sort=False,
            sort_within_batch=True,
            sort_key=lambda x: len(x.src),
            device=iterator_device,
            repeat=False)

        steps_per_epoch = len(batch_iterator)
        total_steps = steps_per_epoch * n_epochs

        step = start_step
        step_elapsed = 0

        # store initial model to be sure at least one model is stored
        val_data = dev_data or data
        losses, metrics = self.evaluator.evaluate(model, val_data,
                                                  self.get_batch_data)

        total_loss, log_msg, model_name = self.get_losses(
            losses, metrics, step)
        log.info(log_msg)

        logs = Log()
        loss_best = top_k * [total_loss]
        best_checkpoints = top_k * [None]
        best_checkpoints[0] = model_name

        Checkpoint(
            model=model,
            optimizer=self.optimizer,
            epoch=start_epoch,
            step=start_step,
            input_vocab=data.fields[machine.src_field_name].vocab,
            output_vocab=data.fields[machine.tgt_field_name].vocab).save(
                self.expt_dir, name=model_name)

        for epoch in range(start_epoch, n_epochs + 1):
            log.info("Epoch: %d, Step: %d" % (epoch, step))

            batch_generator = batch_iterator.__iter__()

            # consuming seen batches from previous training
            for _ in range((epoch - 1) * steps_per_epoch, step):
                next(batch_generator)

            model.train(True)
            for batch in batch_generator:
                step += 1
                step_elapsed += 1

                input_variables, input_lengths, target_variables = self.get_batch_data(
                    batch)

                losses = self._train_batch(input_variables,
                                           input_lengths.tolist(),
                                           target_variables, model,
                                           teacher_forcing_ratio)

                # Record average loss
                for loss in losses:
                    name = loss.log_name
                    print_loss_total[name] += loss.get_loss()
                    epoch_loss_total[name] += loss.get_loss()

                # print log info according to print_every parm
                if step % self.print_every == 0 and step_elapsed > self.print_every:
                    for loss in losses:
                        name = loss.log_name
                        print_loss_avg[
                            name] = print_loss_total[name] / self.print_every
                        print_loss_total[name] = 0

                    m_logs = {}
                    train_losses, train_metrics = self.evaluator.evaluate(
                        model, data, self.get_batch_data)
                    train_loss, train_log_msg, model_name = self.get_losses(
                        train_losses, train_metrics, step)
                    logs.write_to_log('Train', train_losses, train_metrics,
                                      step)
                    logs.update_step(step)

                    m_logs['Train'] = train_log_msg

                    # compute vals for all monitored sets
                    for m_data in monitor_data:
                        losses, metrics = self.evaluator.evaluate(
                            model, monitor_data[m_data], self.get_batch_data)
                        total_loss, log_msg, model_name = self.get_losses(
                            losses, metrics, step)
                        m_logs[m_data] = log_msg
                        logs.write_to_log(m_data, losses, metrics, step)

                    all_losses = ' '.join([
                        '%s:\t %s\n' % (os.path.basename(name), m_logs[name])
                        for name in m_logs
                    ])

                    log_msg = 'Progress %d%%, %s' % (step / total_steps * 100,
                                                     all_losses)

                    log.info(log_msg)

                # check if new model should be saved
                if step % self.checkpoint_every == 0 or step == total_steps:
                    # compute dev loss
                    losses, metrics = self.evaluator.evaluate(
                        model, val_data, self.get_batch_data)
                    total_loss, log_msg, model_name = self.get_losses(
                        losses, metrics, step)

                    max_eval_loss = max(loss_best)
                    if total_loss < max_eval_loss:
                        index_max = loss_best.index(max_eval_loss)
                        # rm prev model
                        if best_checkpoints[index_max] is not None:
                            shutil.rmtree(
                                os.path.join(self.expt_dir,
                                             best_checkpoints[index_max]))
                        best_checkpoints[index_max] = model_name
                        loss_best[index_max] = total_loss

                        # save model
                        Checkpoint(model=model,
                                   optimizer=self.optimizer,
                                   epoch=epoch,
                                   step=step,
                                   input_vocab=data.fields[
                                       machine.src_field_name].vocab,
                                   output_vocab=data.fields[
                                       machine.tgt_field_name].vocab).save(
                                           self.expt_dir, name=model_name)

            if step_elapsed == 0: continue

            for loss in losses:
                epoch_loss_avg[
                    loss.log_name] = epoch_loss_total[loss.log_name] / min(
                        steps_per_epoch, step - start_step)
                epoch_loss_total[loss.log_name] = 0

            if dev_data is not None:
                losses, metrics = self.evaluator.evaluate(
                    model, dev_data, self.get_batch_data)
                loss_total, log_, model_name = self.get_losses(
                    losses, metrics, step)

                self.optimizer.update(loss_total,
                                      epoch)  # TODO check if this makes sense!
                log_msg += ", Dev set: " + log_
                model.train(mode=True)
            else:
                self.optimizer.update(epoch_loss_avg,
                                      epoch)  # TODO check if this makes sense!

            log.info(log_msg)

        return logs

    def train(self,
              model,
              data,
              num_epochs=5,
              resume=False,
              dev_data=None,
              monitor_data={},
              optimizer=None,
              teacher_forcing_ratio=0,
              learning_rate=0.001,
              checkpoint_path=None,
              top_k=5):
        """ Run training for a given model.

        Args:
            model (machine.models): model to run training on, if `resume=True`, it would be
               overwritten by the model loaded from the latest checkpoint.
            data (machine.dataset.dataset.Dataset): dataset object to train on
            num_epochs (int, optional): number of epochs to run (default 5)
            resume(bool, optional): resume training with the latest checkpoint, (default False)
            dev_data (machine.dataset.dataset.Dataset, optional): dev Dataset (default None)
            optimizer (machine.optim.Optimizer, optional): optimizer for training
               (default: Optimizer(pytorch.optim.Adam, max_grad_norm=5))
            teacher_forcing_ratio (float, optional): teaching forcing ratio (default 0)
            learing_rate (float, optional): learning rate used by the optimizer (default 0.001)
            checkpoint_path (str, optional): path to load checkpoint from in case training should be resumed
            top_k (int): how many models should be stored during training
        Returns:
            model (machine.models): trained model.
        """
        # If training is set to resume
        if resume:
            resume_checkpoint = Checkpoint.load(checkpoint_path)
            model = resume_checkpoint.model
            self.optimizer = resume_checkpoint.optimizer

            # A walk around to set optimizing parameters properly
            resume_optim = self.optimizer.optimizer
            defaults = resume_optim.param_groups[0]
            defaults.pop('params', None)
            defaults.pop('initial_lr', None)
            self.optimizer.optimizer = resume_optim.__class__(
                model.parameters(), **defaults)

            start_epoch = resume_checkpoint.epoch
            step = resume_checkpoint.step
        else:
            start_epoch = 1
            step = 0

            def get_optim(optim_name):
                optims = {
                    'adam': optim.Adam,
                    'adagrad': optim.Adagrad,
                    'adadelta': optim.Adadelta,
                    'adamax': optim.Adamax,
                    'rmsprop': optim.RMSprop,
                    'sgd': optim.SGD,
                    None: optim.Adam
                }
                return optims[optim_name]

            self.optimizer = Optimizer(get_optim(optimizer)(model.parameters(),
                                                            lr=learning_rate),
                                       max_grad_norm=5)

        self.logger.info("Optimizer: %s, Scheduler: %s" %
                         (self.optimizer.optimizer, self.optimizer.scheduler))

        logs = self._train_epoches(data,
                                   model,
                                   num_epochs,
                                   start_epoch,
                                   step,
                                   dev_data=dev_data,
                                   monitor_data=monitor_data,
                                   teacher_forcing_ratio=teacher_forcing_ratio,
                                   top_k=top_k)
        return model, logs

    @staticmethod
    def get_batch_data(batch):
        input_variables, input_lengths = getattr(batch, machine.src_field_name)
        target_variables = {
            'decoder_output': getattr(batch, machine.tgt_field_name),
            'encoder_input': input_variables
        }  # The k-grammar metric needs to have access to the inputs

        # If available, also get provided attentive guidance data
        if hasattr(batch, machine.attn_field_name):
            attention_target = getattr(batch, machine.attn_field_name)
            target_variables['attention_target'] = attention_target

        return input_variables, input_lengths, target_variables

    @staticmethod
    def get_losses(losses, metrics, step):
        total_loss = 0
        model_name = ''
        log_msg = ''

        for metric in metrics:
            val = metric.get_val()
            log_msg += '%s %.4f ' % (metric.name, val)
            model_name += '%s_%.2f_' % (metric.log_name, val)

        for loss in losses:
            val = loss.get_loss()
            log_msg += '%s %.4f ' % (loss.name, val)
            model_name += '%s_%.2f_' % (loss.log_name, val)
            total_loss += val

        model_name += 's%d' % step

        return total_loss, log_msg, model_name
Esempio n. 9
0
metrics = [
    WordAccuracy(ignore_index=pad),
    SequenceAccuracy(ignore_index=pad),
    FinalTargetAccuracy(ignore_index=pad, eos_id=tgt.eos_id)
]
# Since we need the actual tokens to determine k-grammar accuracy,
# we also provide the input and output vocab and relevant special symbols
# metrics.append(SymbolRewritingAccuracy(
#     input_vocab=input_vocab,
#     output_vocab=output_vocab,
#     use_output_eos=output_eos_used,
#     input_pad_symbol=src.pad_token,
#     output_sos_symbol=tgt.SYM_SOS,
#     output_pad_symbol=tgt.pad_token,
#     output_eos_symbol=tgt.SYM_EOS,
#     output_unk_symbol=tgt.unk_token))

data_func = SupervisedTrainer.get_batch_data

#################################################################################
# Evaluate model on test set

evaluator = Evaluator(loss=losses, metrics=metrics)
losses, metrics = evaluator.evaluate(model=seq2seq,
                                     data_iterator=test,
                                     get_batch_data=data_func)

total_loss, log_msg, _ = Callback.get_losses(losses, metrics, 0)

logging.info(log_msg)