Esempio n. 1
0
class MADDPGAgentTrainer(AgentTrainer):
    def __init__(self,
                 env_name,
                 name,
                 model,
                 obs_shape_n,
                 act_space_n,
                 agent_index,
                 args,
                 local_q_func=False):
        self.env_name = env_name
        self.name = name
        self.n = len(obs_shape_n)
        self.agent_index = agent_index
        self.args = args
        obs_ph_n = []
        for i in range(self.n):
            obs_ph_n.append(
                U.BatchInput(obs_shape_n[i],
                             name="observation" + str(i)).get())

        # Create all the functions necessary to train the model
        self.q_train, self.q_update, self.q_debug = q_train(
            scope=self.env_name + self.name,
            make_obs_ph_n=obs_ph_n,
            act_space_n=act_space_n,
            q_index=agent_index,
            q_func=model,
            optimizer=tf.train.AdamOptimizer(learning_rate=args.lr),
            grad_norm_clipping=0.5,
            local_q_func=local_q_func,
            num_units=args.num_units)
        self.act, self.p_train, self.p_update, self.p_debug = p_train(
            scope=self.env_name + self.name,
            make_obs_ph_n=obs_ph_n,
            act_space_n=act_space_n,
            p_index=agent_index,
            p_scope="common_" + self.name,
            p_func=model,
            q_func=model,
            optimizer=tf.train.AdamOptimizer(learning_rate=args.lr),
            grad_norm_clipping=0.5,
            local_q_func=local_q_func,
            num_units=args.num_units)
        # Create experience buffer
        self.replay_buffer = ReplayBuffer(args.buffer_size)
        self.max_replay_buffer_len = args.batch_size * args.max_episode_len
        self.replay_sample_index = None

    def action(self, obs):
        return self.act(obs[None])[0]

    def experience(self, obs, act, rew, new_obs, done, terminal):
        # Store transition in the replay buffer.
        self.replay_buffer.add(obs, act, rew, new_obs, float(done))

    def preupdate(self):
        self.replay_sample_index = None

    def update(self, agents, t):
        if len(
                self.replay_buffer
        ) < self.max_replay_buffer_len:  # replay buffer is not large enough
            return
        if not t % 100 == 0:  # only update every 100 steps
            return

        self.replay_sample_index = self.replay_buffer.make_index(
            self.args.batch_size)
        # collect replay sample from all agents
        obs_n = []
        obs_next_n = []
        act_n = []
        index = self.replay_sample_index
        for i in range(self.n):
            # buffer
            obs, act, rew, obs_next, done = agents[
                i].replay_buffer.sample_index(index)
            obs_n.append(obs)
            obs_next_n.append(obs_next)
            act_n.append(act)
        obs, act, rew, obs_next, done = self.replay_buffer.sample_index(index)

        # train q network
        num_sample = 1
        target_q = 0.0
        for j in range(num_sample):
            target_act_next_n = [
                agents[i].p_debug['target_act'](obs_next_n[i])
                for i in range(self.n)
            ]
            target_q_next = self.q_debug['target_q_values'](
                *(obs_next_n + target_act_next_n))
            target_q += rew + self.args.gamma * (1.0 - done) * target_q_next
        target_q /= num_sample
        q_loss = self.q_train(*(obs_n + act_n + [target_q]))

        # train p network
        p_loss = self.p_train(*(obs_n + act_n))

        self.p_update()
        self.q_update()
        return [
            q_loss, p_loss,
            np.mean(target_q),
            np.mean(rew),
            np.mean(target_q_next),
            np.std(target_q)
        ]
Esempio n. 2
0
class MADDPGAgentTrainer(AgentTrainer):
    def __init__(self,
                 name,
                 model,
                 lstm_model,
                 obs_shape_n,
                 act_space_n,
                 agent_index,
                 actors,
                 args,
                 local_q_func=False,
                 session=None,
                 lstm_scope=None):
        self.actors = actors
        self.name = name
        self.n = len(obs_shape_n)
        self.agent_index = agent_index
        self.args = args
        self.history_length = args.history_length

        obs_ph_n = []
        for i in range(self.n):
            obs_shape = [args.history_length] + list(obs_shape_n[i])
            obs_ph_n.append(
                U.BatchInput((obs_shape), name="observation" + str(i)).get())

        # Create all the functions necessary to train the model
        self.q_train, self.q_update, self.q_debug = q_train(
            scope=self.name,
            make_obs_ph_n=obs_ph_n,
            act_space_n=act_space_n,
            q_index=agent_index,
            q_func=model,
            lstm_model=lstm_model,
            lstm_scope=lstm_scope,
            optimizer=tf.train.AdamOptimizer(learning_rate=args.lr),
            args=self.args,
            grad_norm_clipping=0.5,
            local_q_func=local_q_func,
            num_units=args.num_units,
            reuse=False,
            use_lstm=self.args.use_lstm,
            session=session)

        self.replay_buffer = ReplayBuffer(args.buffer_size,
                                          args.history_length)
        self.max_replay_buffer_len = args.batch_size * args.max_episode_len
        self.replay_sample_index = None

    def experience(self, obs, act, rew, new_obs, done, terminal):
        # Store transition in the replay buffer.
        self.replay_buffer.add(obs, act, rew, new_obs, float(done))

    def preupdate(self):
        self.replay_sample_index = None

    def update(self, agents, t):
        # 训练critic
        # print("hello, nihao a ")
        if len(
                self.replay_buffer
        ) < self.max_replay_buffer_len:  # replay buffer is not large enough
            return
        if not t % 100 == 0:  # only update every 100 steps
            return
        # print("critic update")
        self.replay_sample_index = self.replay_buffer.make_index(
            self.args.batch_size)
        # collect replay sample from all agents
        obs_n = []
        obs_next_n = []
        act_n = []
        index = self.replay_sample_index
        for i in range(self.n):
            # buffer
            obs, act, rew, obs_next, done = agents[
                i].replay_buffer.sample_index(index)
            obs_n.append(obs)
            obs_next_n.append(obs_next)
            act_n.append(act)
        obs, act, rew, obs_next, done = self.replay_buffer.sample_index(index)

        # train q network
        num_sample = 1
        target_q = 0.0
        for i in range(num_sample):
            target_act_next_n = [
                self.actors[j].p_debug['target_act'](obs_next_n[i])
                for j in range(self.n)
            ]
            target_q_next = self.q_debug['target_q_values'](
                *(obs_next_n + target_act_next_n))
            target_q += rew + self.args.gamma * (1.0 - done) * target_q_next
        target_q /= num_sample

        q_loss = self.q_train(*(obs_n + act_n + [target_q]))
        # train p network

        self.q_update()
        # print("step: ", t, "q_loss: ", q_loss)
        return [q_loss, np.mean(target_q), np.mean(rew), np.std(target_q)]