Esempio n. 1
0
    def __new__(cls, spectrogram, filterbank=PCP, num_classes=PCP.CLASSES,
                fmin=PCP.FMIN, fmax=PCP.FMAX, fref=A4, **kwargs):
        # check spectrogram type
        if not isinstance(spectrogram, Spectrogram):
            spectrogram = Spectrogram(spectrogram, **kwargs)
        # the spectrogram must not be filtered
        if spectrogram.filterbank is not None:
            import warnings
            warnings.warn('Spectrogram should not be filtered.')
        # reference frequency for the filterbank
        if fref is None:
            fref = spectrogram.tuning_frequency()

        # set filterbank
        if issubclass(filterbank, Filterbank):
            filterbank = filterbank(spectrogram.bin_frequencies,
                                    num_classes=num_classes, fmin=fmin,
                                    fmax=fmax, fref=fref)
        if not isinstance(filterbank, Filterbank):
            raise ValueError('not a Filterbank type or instance: %s' %
                             filterbank)
        # filter the spectrogram
        data = np.dot(spectrogram, filterbank)
        # cast as PitchClassProfile
        obj = np.asarray(data).view(cls)
        # save additional attributes
        obj.filterbank = filterbank
        obj.spectrogram = spectrogram
        # return the object
        return obj
Esempio n. 2
0
    def __new__(cls, spectrogram, filterbank=PCP, num_classes=PCP.CLASSES,
                fmin=PCP.FMIN, fmax=PCP.FMAX, fref=A4, **kwargs):
        # check spectrogram type
        if not isinstance(spectrogram, Spectrogram):
            spectrogram = Spectrogram(spectrogram, **kwargs)
        # spectrogram should not be filtered
        if hasattr(spectrogram, 'filterbank'):
            warnings.warn('Spectrogram should not be filtered.',
                          RuntimeWarning)
        # reference frequency for the filterbank
        if fref is None:
            fref = spectrogram.tuning_frequency()

        # set filterbank
        if issubclass(filterbank, Filterbank):
            filterbank = filterbank(spectrogram.bin_frequencies,
                                    num_classes=num_classes, fmin=fmin,
                                    fmax=fmax, fref=fref)
        if not isinstance(filterbank, Filterbank):
            raise ValueError('not a Filterbank type or instance: %s' %
                             filterbank)
        # filter the spectrogram
        data = np.dot(spectrogram, filterbank)
        # cast as PitchClassProfile
        obj = np.asarray(data).view(cls)
        # save additional attributes
        obj.filterbank = filterbank
        obj.spectrogram = spectrogram
        # return the object
        return obj
def getPCPHistogram(filename, fs=8192, show=False):

    res = {}

    sig = Signal(filename, num_channels=1)
    fsig = FramedSignal(sig, frame_size=fs)
    stft = ShortTimeFourierTransform(fsig)
    spec = Spectrogram(stft)
    chroma = PitchClassProfile(spec, num_classes=12)

    hist = [0 for i in range(12)]
    hist_f = [0 for i in range(12)]
    for f in range(len(chroma)):
        wf = chroma[f]
        hist = map(sum, zip(hist, wf))
        f = flatness(wf)
        hist_f = map(sum, zip(hist_f, [w * f for w in wf]))

    s = sum(hist)
    hist = map(lambda x: x / s, hist)
    C_hist = [hist[i - 9] for i in range(12)]
    res['standard'] = C_hist

    s_f = sum(hist_f)
    hist_f = map(lambda x: x / s_f, hist_f)
    C_hist_f = [hist_f[i - 9] for i in range(12)]
    res['standard_f'] = C_hist_f

    hpss = HarmonicPercussiveSourceSeparation()
    h, _ = hpss.process(spec)
    chroma = PitchClassProfile(h, num_classes=12)

    hist = [0 for i in range(12)]
    hist_f = [0 for i in range(12)]
    for f in range(len(chroma)):
        wf = chroma[f]
        hist = map(sum, zip(hist, wf))
        f = flatness(wf)
        hist_f = map(sum, zip(hist_f, [w * f for w in wf]))

    s = sum(hist)
    hist = map(lambda x: x / s, hist)
    C_hist = [hist[i - 9] for i in range(12)]
    res['hpss'] = C_hist

    s_f = sum(hist_f)
    hist_f = map(lambda x: x / s_f, hist_f)
    C_hist_f = [hist_f[i - 9] for i in range(12)]
    res['hpss_f'] = C_hist_f

    dcp = DeepChromaProcessor()
    deepchroma = dcp(filename)

    hist = [0 for i in range(12)]
    hist_f = [0 for i in range(12)]
    for f in range(len(deepchroma)):
        wf = deepchroma[f]
        hist = map(sum, zip(hist, wf))
        f = flatness(wf)
        hist_f = map(sum, zip(hist_f, [w * f for w in wf]))

    s = sum(hist)
    hist = map(lambda x: x / s, hist)
    res['deep'] = hist

    s_f = sum(hist_f)
    hist_f = map(lambda x: x / s_f, hist_f)
    res['deep_f'] = hist_f

    if show:
        plt.subplot(131)
        plt.barh(range(12), res['standard'])
        plt.subplot(132)
        plt.barh(range(12), res['hpss'])
        plt.subplot(133)
        plt.barh(range(12), res['deep'])
        plt.show()
    return res
Esempio n. 4
0
from os.path import join as pj

from . import AUDIO_PATH, ACTIVATIONS_PATH

from madmom.audio.signal import SignalProcessor, FramedSignalProcessor
from madmom.audio.filters import LogarithmicFilterbank
from madmom.audio.stft import ShortTimeFourierTransformProcessor
from madmom.audio.spectrogram import (Spectrogram, SpectrogramProcessor,
                                      FilteredSpectrogramProcessor,
                                      LogarithmicFilteredSpectrogram,
                                      LogarithmicSpectrogramProcessor)
from madmom.features import Activations
from madmom.features.onsets import *

sample_file = pj(AUDIO_PATH, 'sample.wav')
sample_spec = Spectrogram(sample_file, circular_shift=True)
sample_log_filt_spec = LogarithmicFilteredSpectrogram(
    sample_spec, num_bands=24, mul=1, add=1)
sample_cnn_act = Activations(pj(ACTIVATIONS_PATH, 'sample.onsets_cnn.npz'))
sample_rnn_act = Activations(pj(ACTIVATIONS_PATH, 'sample.onsets_rnn.npz'))
sample_brnn_act = Activations(pj(ACTIVATIONS_PATH, 'sample.onsets_brnn.npz'))
sample_superflux_act = Activations(pj(ACTIVATIONS_PATH,
                                      'sample.super_flux.npz'))


class TestHighFrequencyContentFunction(unittest.TestCase):

    def test_values(self):
        odf = high_frequency_content(sample_log_filt_spec)
        self.assertTrue(np.allclose(odf[:6], [8.97001563, 9.36399107,
                                              8.64144536, 8.34977449,