def _generate_weighted_edges(self, weight_matrices, time_interval_start):
        log("Generating weighted edges...")
        if time_interval_start not in self.avail_time_intervals:
            raise Exception("The given time interval is not valid. Did you check available time intervals?")

        # Get index of given time interval.
        time_idx = None
        for i, avail_time in enumerate(self.avail_time_intervals):
            if avail_time == time_interval_start:
                log("Found requested time interval")
                time_idx = i
                break

        weight_matrix = weight_matrices[time_idx]

        result = WeightResult()
        result.time_interval_start = time_interval_start
        result.speed_intervals = [0, 5, 10, 15, 20, 25, 30, 35, 40]

        weighted_edges = []
        for i, edge_id in enumerate(self._edges_lst):
            w_edge = WeightedEdge()
            # Map edge.
            w_edge.edge_id = edge_id
            node_ids = edge_id.split('-')
            w_edge.start_node_osm_id  = node_ids[0]
            w_edge.end_node_osm_id  = node_ids[1]
            # Get weights from this edge in input matrix!
            w_edge.weights = weight_matrix[i].tolist()
            weighted_edges.append(w_edge)
        result.weighted_edges = weighted_edges
        return result
    def _load_data(self, pickle_loader):
        self._edges_lst = pickle_loader.load_edges()
        self._input_matrices = pickle_loader.load_input_matrices()
        self._prediction_matrices = pickle_loader.load_prediction_matrices()
        self._time_intervals_srs = pickle_loader.load_time_intervals()

        # Set global index limit to num of indices in prediction results.
        self._limit = len(self._prediction_matrices)

        log("Pickles loaded.")
def main(_):
    log("In gcrn_main_gcnn")

    prepare_dirs(config)
    prepare_config_date(config, config.ds_ind)
    # Random seed settings
    rng = np.random.RandomState(config.random_seed)
    tf.set_random_seed(config.random_seed)

    # Model training
    log("Initilializing trainer...")
    trainer = Trainer(config, rng)
    save_config(config.model_dir, config)
    log("Trainer initialized!")

    config.load_path = config.model_dir
    if config.is_train:
        log("Training...")
        trainer.train(save=True)
        log("Training done!")
        log("Testing...")
        result_dict = trainer.test()
        log("Testing done!")
    else:
        if not config.load_path:
            raise Exception(
                "[!] You should specify `load_path` to "
                "load a pretrained model")
        log("Testing...")
        result_dict = trainer.test()
        log("Testing done!")
    save_results(config.result_dir, result_dict)
    accept_rate = evaluate_result(result_dict, method='KS-test', alpha=0.1)
    kl_div = evaluate_result(result_dict, method='KL')
    wasser_dis = evaluate_result(result_dict, method='wasser')
    sig_test = evaluate_result(result_dict, method='sig_test')
    print("The accept rate of KS test is ", accept_rate)
    print("The final KL div is ", kl_div)
    print("The wasser distance is ", wasser_dis)
    print("The AR of Sign Test is ", sig_test)
Esempio n. 4
0
# Please note: Files placed in the package "graphcompletionlib" are a clone of the GraphCompletion algorithm
# found here: https://github.com/hujilin1229/GraphCompletion
# However, a few modifications has been made to the algorithm in order to let adapt it to this project.
# These modifications are marked by "SW502" as far as possible.

from datetime import datetime
from flask import Flask
from flask_cors import CORS
import sys
from main.common.logger import log
from main.configuration.config import *
from main.core.models import *
from graphcompletionlib import gcrn_main_gcnn
from main.core.services import WeightCompleter

log("Starting app...")

if len(sys.argv) > 1 and sys.argv[1] == "prod":
    print("Loading production config")
    config = ProductionConfig()
else:
    print("Loading development config")
    config = DevelopmentConfig()

app = Flask(__name__)
app.config.from_object(config)
log(f'ENV is set to: {app.config["ENV"]}')

from main.web.routes import routes
app.register_blueprint(routes)
Esempio n. 5
0
    def __init__(self,
                 sname,
                 mode,
                 target,
                 sample_rate,
                 win_size,
                 hist_range,
                 s_month,
                 s_date,
                 e_month,
                 e_date,
                 data_rm,
                 batch_size=-1,
                 coarsening_level=4,
                 conv_mode='gcnn',
                 is_coarsen=True,
                 is_predicting=False):

        base_dir = os.path.join('.\graphcompletionlib', 'data', sname)
        print(base_dir)
        if target == 'avg':
            data_dir = os.path.join(
                base_dir, '{}_{}'.format(sample_rate, win_size), mode, target,
                '{}_{}-{}_{}'.format(s_date, s_month, e_date,
                                     e_month), 'rm{}'.format(data_rm))
        else:
            data_dir = os.path.join(
                base_dir, '{}_{}'.format(sample_rate, win_size), mode, target,
                '{}_{}_{}'.format(hist_range[0], hist_range[-1] + 1,
                                  hist_range[1] - hist_range[0]),
                '{}_{}-{}_{}'.format(s_date, s_month, e_date,
                                     e_month), 'rm{}'.format(data_rm))

        dict_normal_fname = os.path.join(data_dir, 'dict_normal.pickle')
        train_data_dict_fname = os.path.join(data_dir,
                                             'train_data_dict.pickle')
        validate_data_dict_fname = os.path.join(data_dir,
                                                'validate_data_dict.pickle')
        Adj_fname = os.path.join(base_dir, 'edge_adj.pickle')



        if not os.path.exists(dict_normal_fname) or \
                not os.path.exists(train_data_dict_fname) or \
                not os.path.exists(validate_data_dict_fname) or \
                not os.path.exists(Adj_fname):
            print("Data does not exist! Creating datasets...")
            self.data_generator(base_dir, data_dir, sname, mode, target,
                                sample_rate, win_size, hist_range, s_month,
                                s_date, e_month, e_date, data_rm,
                                is_predicting)

        print("Data exists! Loading datasets...")
        adj = pklLoad(Adj_fname)
        dict_normal = pklLoad(dict_normal_fname)
        train_data_dict = pklLoad(train_data_dict_fname)
        validate_data_dict = pklLoad(validate_data_dict_fname)
        log("Data loaded")

        if target == 'avg':
            self.y_scaler = dict_normal['velocity']
        else:
            self.y_scaler = None

        train_data = train_data_dict['velocity_x']
        train_labels = train_data_dict['velocity_y']
        train_label_weight = train_data_dict['weight_y']
        train_counts = train_data_dict['count_y']
        train_vel_lists = train_data_dict['vel_list']
        cat_train = train_data_dict['cat']
        con_train = train_data_dict['con']

        log(f"Train data loaded, sample count: {len(train_data)} ")

        test_data = validate_data_dict['velocity_x']
        test_labels = validate_data_dict['velocity_y']
        test_labels_weight = validate_data_dict['weight_y']
        test_counts = validate_data_dict['count_y']
        test_vel_lists = validate_data_dict['vel_list']
        cat_test = validate_data_dict['cat']
        con_test = validate_data_dict['con']

        log(f"Test data loaded, sample count: {len(test_data)} ")
        # self.mean_y = mean_gt(train_data)
        # self.mean_y[np.isnan(self.mean_y)] = 0.0
        # train_data = fill_mean(train_data, self.mean_y)
        # train_labels = fill_mean(train_labels, self.mean_y)
        # train_label_weight = np.ones(train_label_weight.shape)
        #
        # test_data = fill_mean(test_data, self.mean_y)

        if conv_mode == 'gcnn':
            perm_file = os.path.join(base_dir, 'adj_perm.pickle')
            graph_file = os.path.join(base_dir, 'perm_graphs.pickle')
            if os.path.exists(perm_file) and os.path.exists(graph_file):
                self.perm = pklLoad(perm_file)
                self.graphs = pklLoad(graph_file)
            else:
                self.graphs, self.perm = coarsening.coarsen(
                    adj, levels=coarsening_level, self_connections=False)
                pklSave(perm_file, self.perm)
                pklSave(graph_file, self.graphs)
            if is_coarsen:
                train_data = coarsening.perm_data_hist(train_data, self.perm)
                test_data = coarsening.perm_data_hist(test_data, self.perm)

        self.all_batches = []
        self.sizes = []

        log(f"Constrcuting batches... Batch size set to {batch_size}.")
        ######################
        # SW502 Modification
        ######################
        if (is_predicting):
            log("Constructing only test batches...")
            self.construct_batches_all_test(test_data, test_labels,
                                            test_labels_weight, cat_test,
                                            con_test, test_counts,
                                            test_vel_lists, batch_size)
        # End of mod.
        else:
            log("Splitting batches into train, val, tests... ")
            val_x, test_x, val_y, test_y, \
            val_y_weight, test_y_weight, \
            val_con, test_con, val_cat, \
            test_cat, val_count, test_count, \
            val_vel_list, test_vel_list = \
                train_test_split(test_data, test_labels, test_labels_weight,
                                 con_test, cat_test, test_counts,
                                 test_vel_lists, test_size=0.8)

            print("Reshaping tensors...")
            # Split train, val, tests data into batches
            self.construct_batches(train_data, train_labels,
                                   train_label_weight, cat_train, con_train,
                                   train_counts, train_vel_lists, batch_size)
            self.construct_batches(val_x, val_y, val_y_weight, val_cat,
                                   val_con, val_count, val_vel_list,
                                   batch_size)
            self.construct_batches(test_x, test_y, test_y_weight, test_cat,
                                   test_con, test_count, test_vel_list,
                                   batch_size)

        print(
            "Data load done. Number of batches in train: %d, val: %d, test: %d"
            % (self.sizes[0], self.sizes[1], self.sizes[2]))

        self.adj = adj
        self.batch_idx = [0, 0, 0]