def __init__(self, input_features, n_classes, manifold=None,
                 bias=True, left_addition=True, signed=True):
        
        super(MobiusClassificationLayer, self).__init__()
        self.manifold = Mobius() if manifold is None else manifold
        self.input_features = input_features
        self.n_classes = n_classes
        self.left_addition = left_addition
        self.signed = signed
        # Initiallize 
        self.weight = nn.Parameter(torch.Tensor(n_classes, input_features))
        self.bias = nn.Parameter(torch.Tensor(n_classes, input_features))

        xavier_uniform_(self.weight)
        self.bias.data.uniform_(-.01, .01)        
 def __init__(self,
              reg_ot=1e-1,
              ot_solver='sinkhorn_knopp',
              batch_size=128,
              wrapped_function=None,
              normalization='max',
              is_hyperbolic=True,
              match_targets=False):
     self.reg_ot = reg_ot
     self.ot_solver = ot_solver
     self.batch_size = batch_size
     self.wrapped_function = wrapped_function
     self.normalization = normalization
     self.is_hyperbolic = is_hyperbolic
     self.match_targets = match_targets
     self.manifold = Mobius() if is_hyperbolic else Euclidean()
    def __init__(self, input_features, output_features, manifold=None, 
                 bias=True, left_addition=True):
        super(MobiusLinear, self).__init__()
        self.manifold = Mobius() if manifold is None else manifold
        self.input_features = input_features
        self.output_features = output_features
        self.left_addition = left_addition
        # Initiallize 
        self.weight = nn.Parameter(torch.Tensor(output_features, 
                                                input_features))
        if bias:
            self.bias = nn.Parameter(torch.Tensor(output_features))
        else:
            self.register_parameter('bias', None)

        xavier_uniform_(self.weight)
        if self.bias is not None:
            self.bias.data.uniform_(-.01, .01)        
class MobiusClassificationLayer(nn.Module):
    def __init__(self, input_features, n_classes, manifold=None,
                 bias=True, left_addition=True, signed=True):
        
        super(MobiusClassificationLayer, self).__init__()
        self.manifold = Mobius() if manifold is None else manifold
        self.input_features = input_features
        self.n_classes = n_classes
        self.left_addition = left_addition
        self.signed = signed
        # Initiallize 
        self.weight = nn.Parameter(torch.Tensor(n_classes, input_features))
        self.bias = nn.Parameter(torch.Tensor(n_classes, input_features))

        xavier_uniform_(self.weight)
        self.bias.data.uniform_(-.01, .01)        
        
    def forward(self, x):           
        output = []
        for c in range(self.n_classes):
            a = self.weight[c, :]
            p = self.bias[c, :]
            norm_a_p = self.manifold.norm(p, a) #* self.manifold.s
            decision = self.manifold.dist2plane(
                x=x, p=p, a=a, signed=self.signed) * norm_a_p                  
            output.append(decision)
        return torch.cat(output, dim=1)            
                      
    def optim_params(self):
        """ To use with GeoOpt
        """
        return [{
            'params': self.parameters(),
            'rgrad': self.manifold.rgrad,
            'expm': self.manifold.expm,
            'logm': self.manifold.logm,
        }, ]         
Esempio n. 5
0
def compute_cost(Xs,
                 Xt,
                 ys=None,
                 yt=None,
                 manifold=None,
                 is_hyperbolic=True,
                 normalization='max',
                 wrapped_function=None,
                 detach_x=False,
                 detach_y=True,
                 limit_max=1e15,
                 match_targets=False):
    """
        Cost used in the OT problem
    """
    if is_hyperbolic:
        wrapped_function = ((lambda x: torch.cosh(x).log())
                            if wrapped_function is None else wrapped_function)
        manifold = Mobius() if manifold is None else manifold
        M_0 = cost_matrix_hyperbolic(Xs,
                                     Xt,
                                     manifold=manifold,
                                     detach_x=detach_x,
                                     detach_y=detach_y)
        M_0 = wrapped_function(M_0)
    else:
        M_0 = cost_matrix(Xs, Xt)

    M_0 = cost_normalization(M_0, normalization)

    if ((ys is not None) and (yt is not None)) and match_targets:
        limit_max_ = limit_max * M_0.max()
        ys_ = ys.data.numpy()
        yt_ = yt.data.numpy()
        classes = [c for c in np.unique(ys_) if c != -1]
        # assumes labeled source samples occupy the first rows
        # and labeled target samples occupy the first columns
        for c in classes:
            idx_s = np.where((ys_ != c) & (ys_ != -1))
            idx_t = np.where(yt_ == c)
            # all the coefficients corresponding to a source sample
            # and a target sample :
            # with different labels get a infinite
            for j in idx_t[0]:
                M_0[idx_s[0], j] = torch.tensor([limit_max_])

    return M_0
Esempio n. 6
0
def cost_matrix_hyperbolic(x, y, manifold=None, detach_x=True, detach_y=True):
    u, v = x, y
    manifold = Mobius() if manifold is not None else manifold
    ## Hack
    try:
        if detach_x:
            u.detach_()
    except:
        pass
    try:
        if detach_y:
            v.detach_()
    except:
        pass

    s = manifold.s
    #M = acosh(base_poincare_matrix(u, v, s=s))
    M = poincare_matrix(u, v, manifold=manifold, s=s)
    return M
class MobiusLinear(nn.Module):
    def __init__(self, input_features, output_features, manifold=None, 
                 bias=True, left_addition=True):
        super(MobiusLinear, self).__init__()
        self.manifold = Mobius() if manifold is None else manifold
        self.input_features = input_features
        self.output_features = output_features
        self.left_addition = left_addition
        # Initiallize 
        self.weight = nn.Parameter(torch.Tensor(output_features, 
                                                input_features))
        if bias:
            self.bias = nn.Parameter(torch.Tensor(output_features))
        else:
            self.register_parameter('bias', None)

        xavier_uniform_(self.weight)
        if self.bias is not None:
            self.bias.data.uniform_(-.01, .01)        

    def forward(self, x):
        if self.bias is not None:
            if not self.left_addition:
                h = self.manifold.add(
                    self.manifold.mat_mul(self.weight, x),
                    self.manifold.expm_zero(self.bias)
                )
            else:
                h = self.manifold.add(
                    self.manifold.expm_zero(self.bias),
                    self.manifold.mat_mul(self.weight, x),
                )
        else:
            h = self.manifold.mat_mul(self.weight, x)
        return h
          
    def optim_params(self):
        """ To use with GeoOpt
        """
        return [{
            'params': self.parameters(),
            'rgrad': self.manifold.rgrad,
            'expm': self.manifold.expm,
            'logm': self.manifold.logm,
        }, ]       
def minimize_sinkhorn(Xs,
                      Xt,
                      model,
                      ys=None,
                      yt=None,
                      lr=1e-2,
                      reg_ot=1e-2,
                      is_hyperbolic=True,
                      match_targets=True,
                      n_iter_sinkhorn=100,
                      max_iter=10000,
                      stop_thr=1e-5,
                      max_iter_map=1000,
                      is_sinkhorn_normalized=False,
                      every_n=100,
                      rate=1e-2,
                      is_projected_output=False,
                      type_ini='bary',
                      is_init_map=False,
                      verbose=False):

    mobius = Mobius()
    # Initialize: Barycenter approximation
    if is_init_map:

        model = deepcopy(model)

        if is_hyperbolic:
            optimizer_init = RiemannianAdam(model.parameters(), lr=lr)
            manifold = Mobius()
        else:
            optimizer_init = Adam(model.parameters(), lr=lr)
            manifold = Euclidean()

        ### Compute cost
        _, _, _, coupling = compute_transport(Xs=Xs,
                                              Xt=Xt,
                                              ys=ys,
                                              yt=yt,
                                              reg_ot=reg_ot,
                                              match_targets=match_targets,
                                              manifold=manifold,
                                              is_hyperbolic=is_hyperbolic)

        if type_ini == 'bary':
            x_approx = manifold.barycenter_mapping(Xt, coupling)
        elif (type_ini == 'rot_s2t') or (type_ini == 'rot_t2s'):
            xs_np = Xs.data.numpy()
            xt_np = Xt.data.numpy()
            xs_mean = xs_np.mean(0)
            xt_mean = xt_np.mean(0)
            xs_centered = xs_np - xs_mean
            xt_centered = xt_np - xt_mean
            if type_ini == 'rot_s2t':
                P, _ = orthogonal_procrustes(xs_centered, xt_centered)
                x_approx = torch.FloatTensor(xs_centered.dot(P) + xt_mean)
            else:
                P, _ = orthogonal_procrustes(xt_centered, xs_centered)
                x_approx = torch.FloatTensor(xt_centered.dot(P) + xs_mean)

        elif type_ini == 'id':
            x_approx = Xs

        loop_map = 1 if max_iter_map > 0 else 0
        vloss_map = [stop_thr]
        it = 0
        while loop_map:
            it += 1
            optimizer_init.zero_grad()
            X_pred = mobius.proj2ball(
                model(Xs)) if is_projected_output else model(Xs)
            loss_map = manifold.distance(X_pred, x_approx).mean()
            vloss_map.append(loss_map.item())
            relative_error = abs(vloss_map[-1] - vloss_map[-2]) / abs(
                vloss_map[-2])
            if (it >= max_iter_map) or (np.isnan(vloss_map[-1])):
                loop_map = 0

            if relative_error < stop_thr:
                loop_map = 0

            loss_map.backward()
            optimizer_init.step()

    this_model = deepcopy(model)
    lr_mapping = lr * rate

    if is_hyperbolic:
        optimizer = RiemannianAdam(this_model.parameters(), lr=lr_mapping)
    else:
        optimizer = Adam(this_model.parameters(), lr=lr_mapping)

    vloss = [stop_thr]

    loop = 1 if max_iter > 0 else 0
    it = 0
    while loop:
        it += 1
        optimizer.zero_grad()
        X_pred = mobius.proj2ball(
            this_model(Xs)) if is_projected_output else this_model(Xs)

        if is_sinkhorn_normalized:

            loss = sinkhorn_normalized(X_pred,
                                       Xt,
                                       reg_ot=reg_ot,
                                       n_iter=n_iter_sinkhorn,
                                       ys=ys,
                                       yt=yt,
                                       match_targets=match_targets,
                                       is_hyperbolic=is_hyperbolic)
        else:
            G, loss = sinkhorn_cost(
                X_pred,
                Xt,
                reg_ot=reg_ot,
                n_iter=n_iter_sinkhorn,
                match_targets=match_targets,
                #wrapped_function=lambda x: -torch.cosh(x),
                ys=ys,
                yt=yt,
                is_hyperbolic=is_hyperbolic)

        vloss.append(loss.item())

        relative_error = (abs(vloss[-1] - vloss[-2]) /
                          abs(vloss[-2]) if vloss[-2] != 0 else 0)

        if verbose and (it % every_n == 0):
            print("\t \t it: %s similarity loss: %.3f" % (it, vloss[-1]))

        if (it >= max_iter) or (np.isnan(vloss[-1])):
            loop = 0

        if relative_error < stop_thr:
            loop = 0

        loss.backward()
        optimizer.step()

    return this_model
class HyperbolicSinkhornTransport(BaseEstimator):
    def __init__(self,
                 reg_ot=1e-1,
                 ot_solver='sinkhorn_knopp',
                 batch_size=128,
                 wrapped_function=None,
                 normalization='max',
                 is_hyperbolic=True,
                 match_targets=False):
        self.reg_ot = reg_ot
        self.ot_solver = ot_solver
        self.batch_size = batch_size
        self.wrapped_function = wrapped_function
        self.normalization = normalization
        self.is_hyperbolic = is_hyperbolic
        self.match_targets = match_targets
        self.manifold = Mobius() if is_hyperbolic else Euclidean()

    def fit(self, Xs, Xt, ys=None, yt=None):
        self.Xs_train_ = deepcopy(Xs)
        self.Xt_train_ = deepcopy(Xt)

        _, _, _, coupling = compute_transport(
            Xs=Xs,
            Xt=Xt,
            ys=ys,
            yt=yt,
            reg_ot=self.reg_ot,
            ot_solver=self.ot_solver,
            wrapped_function=self.wrapped_function,
            normalization=self.normalization,
            is_hyperbolic=self.is_hyperbolic,
            detach_x=False,
            detach_y=False,
            match_targets=self.match_targets,
        )
        self.coupling_ = coupling
        return self

    def transform(self, Xs):
        indices = np.arange(Xs.shape[0])
        batch_ind = [
            indices[i:i + self.batch_size]
            for i in range(0, len(indices), self.batch_size)
        ]

        transp_Xs = []
        X_bary = self.manifold.barycenter_mapping(self.Xt_train_,
                                                  self.coupling_)
        #print(X_bary)
        for bi in batch_ind:
            # get the nearest neighbor in the source domain
            M0 = compute_cost(
                Xs[bi],
                self.Xs_train_,
                normalization=self.normalization,
                wrapped_function=lambda x: x,  # using the hyperbolic distance
                is_hyperbolic=self.is_hyperbolic)
            idx = M0.argmin(dim=1)
            # define the transported points
            diff = self.manifold.add(-self.Xs_train_[idx, :], Xs[bi])
            ####transp_Xs_ = self.manifold.add(diff, X_bary[idx, :])
            transp_Xs_ = self.manifold.add(X_bary[idx, :], diff)
            transp_Xs.append(transp_Xs_)

        return torch.cat(transp_Xs, dim=0)

    def fit_transport(self, Xs, Xt, ys=None, yt=None):
        self.fit(Xs=Xs, Xt=Xt, ys=ys, yt=yt)
        return self.transform(Xs)
def mapping_estimation(Xs,
                       Xt,
                       transport_model=None,
                       manifold=None,
                       ys=None,
                       yt=None,
                       lr=1e-3,
                       reg_ot=0,
                       ot_solver='sinkhorn_knopp',
                       display_every_map=50,
                       display_every_coupling=10,
                       reg_fidelity=1e-3,
                       stop_thr_coupling=1e-5,
                       stop_thr_map=1e-5,
                       stop_thr_global=1e-5,
                       max_iter_map=300,
                       max_iter_coupling=20,
                       wrapped_function=None,
                       normalization='max',
                       max_iter=10,
                       match_targets=False,
                       is_hyperbolic=True,
                       verbose=False,
                       results_path=None,
                       is_wrapped_linear=False,
                       save=False):

    results_path = '' if results_path is None else results_path
    transport_map = deepcopy(transport_model)

    if manifold is None:
        manifold = Mobius() if is_hyperbolic else Euclidean()

    ### Compute cost
    a, b, M, coupling = compute_transport(Xs=Xs,
                                          Xt=Xt,
                                          ys=ys,
                                          yt=yt,
                                          reg_ot=reg_ot,
                                          ot_solver=ot_solver,
                                          wrapped_function=wrapped_function,
                                          normalization=normalization,
                                          match_targets=match_targets,
                                          is_hyperbolic=is_hyperbolic)

    loss = LossModule(xs=Xs,
                      xt=Xt,
                      M=M,
                      a=a,
                      b=b,
                      manifold=manifold,
                      reg_fidelity=reg_fidelity,
                      ot_solver=ot_solver,
                      reg_ot=reg_ot)

    vloss = [stop_thr_global]
    ### Initialize transport map
    if is_wrapped_linear:
        transport_map = solve_wrapped_model(coupling, loss)
    else:
        transport_map = solve_hyperbolic_nn_model(
            transport_map,
            coupling,
            loss,
            max_iter=max_iter_map,
            stop_thr=stop_thr_map,
            lr=lr,
            display_every=display_every_map,
            verbose=verbose,
            is_hyperbolic=is_hyperbolic)

    ### Save initial model
    if save:
        joblib.dump(
            transport_map,
            pjoin(
                results_path,
                f"{reg_ot}_{reg_fidelity}_{is_hyperbolic}_{match_targets}_initial.model"
            ))

    vloss.append(to_float(loss.cost(transport_map, coupling)))
    loop = 1 if max_iter > 0 else 0
    it = 0
    if verbose:
        print("global it: %s cost: %.4f" % (it, vloss[-1]))

    #### Block coordinate descent
    while loop:
        it += 1
        # update coupling
        if verbose:
            print("\t update coupling")
        coupling = solve_coupling(transport_map,
                                  coupling,
                                  loss=loss,
                                  max_iter=max_iter_coupling,
                                  stop_thr=stop_thr_coupling,
                                  verbose=verbose,
                                  every_n=display_every_coupling)

        # update transport map
        if verbose:
            print("\t update transport map")

        if is_wrapped_linear:
            transport_map = solve_wrapped_model(coupling, loss)
        else:
            transport_map = solve_hyperbolic_nn_model(
                transport_map,
                coupling,
                loss,
                max_iter=max_iter_map,
                stop_thr=stop_thr_map,
                lr=lr,
                display_every=display_every_map,
                verbose=verbose,
                is_hyperbolic=is_hyperbolic)

        if save:
            joblib.dump(
                transport_map,
                pjoin(
                    results_path,
                    f"{reg_ot}_{reg_fidelity}_{is_hyperbolic}_{match_targets}_{it}.model"
                ))

        cost = to_float(loss.cost(transport_map, coupling))
        vloss.append(cost)

        if verbose:
            print("global it: %s cost: %.4f" % (it, vloss[-1]))

        if (it >= max_iter) or (np.isnan(vloss[-1])):
            loop = 0

        relative_error = abs(vloss[-1] - vloss[-2]) / abs(vloss[-2])

        if relative_error < stop_thr_global:
            loop = 0
    return transport_map, coupling
Esempio n. 11
0
def make_domain_adaptation_toy_data(n=1000,
                                    d=2,
                                    sigma=.01,
                                    manifold=None,
                                    bias_source=None,
                                    bias_target=None,
                                    A=None):

    manifold = Mobius(eps=1e-15) if manifold is None else manifold

    offset = torch.FloatTensor(np.array([[0, .2]]))

    bias_source = torch.FloatTensor(np.array(
        [[0., .0]])) if bias_source is None else bias_source
    bias_target = torch.FloatTensor(np.array(
        [[.4, .2]])) if bias_target is None else bias_target

    # Source samples
    angles = np.random.rand(n, 1) * 2 * np.pi
    xs_base = torch.FloatTensor(0.1 * np.concatenate(
        (np.sin(angles), np.cos(angles)), axis=1))

    noise = torch.randn(n, 2)
    xs = manifold.add(manifold.expm_zero(sigma * noise), xs_base)
    xs[:n // 2, :] = manifold.add(offset, xs[:n // 2, :])

    xs = manifold.add(bias_source, xs)

    # Target samples
    anglet = np.random.rand(n, 1) * 2 * np.pi
    xt_base = torch.FloatTensor(0.1 * np.concatenate(
        (np.sin(anglet), np.cos(anglet)), axis=1))

    noise = torch.randn(n, 2)
    xt = manifold.add(manifold.expm_zero(sigma * noise), xt_base)
    xt[:n // 2, :] = manifold.add(offset, xt[:n // 2, :])
    # Affine transformation
    A = torch.FloatTensor(np.array([[1.5, .7], [.7, 1.5]])) if A is None else A

    xt = manifold.add(bias_target, manifold.mat_mul(A, xt))

    return xs, xt, A
 def __init__(self, manifold=None, hyperbolic_output=True):
     super(MobiusElu, self).__init__()
     self.manifold = Mobius() if manifold is None else manifold
     self.hyperbolic_output = hyperbolic_output
        
    def forward(self, x):           
        output = []
        for c in range(self.n_classes):
            a = self.weight[c, :]
            p = self.bias[c, :]
            norm_a_p = self.manifold.norm(p, a) #* self.manifold.s
            decision = self.manifold.dist2plane(
                x=x, p=p, a=a, signed=self.signed) * norm_a_p                  
            output.append(decision)
        return torch.cat(output, dim=1)            
                      
    def optim_params(self):
        """ To use with GeoOpt
        """
        return [{
            'params': self.parameters(),
            'rgrad': self.manifold.rgrad,
            'expm': self.manifold.expm,
            'logm': self.manifold.logm,
        }, ]         


if __name__ == "__main__":

    mobius = Mobius(eps=1e-15)
    model = nn.Sequential(*[
        MobiusLinear(input_features=2, output_features=2, manifold=mobius),
        MobiusRelu(manifold=mobius),
        MobiusLinear(input_features=2, output_features=2, manifold=mobius),
    ])