Esempio n. 1
0
    def capture_mobjects(self, mobjects, **kwargs):
        mobjects = self.get_mobjects_to_display(mobjects, **kwargs)

        # Organize this list into batches of the same type, and
        # apply corresponding function to those batches
        type_func_pairs = [
            (VMobject, self.display_multiple_vectorized_mobjects),
            (PMobject, self.display_multiple_point_cloud_mobjects),
            (AbstractImageMobject, self.display_multiple_image_mobjects),
            (Mobject, lambda batch, pa: batch),  # Do nothing
        ]

        def get_mobject_type(mobject):
            for mobject_type, func in type_func_pairs:
                if isinstance(mobject, mobject_type):
                    return mobject_type
            raise Exception(
                "Trying to display something which is not of type Mobject"
            )
        batch_type_pairs = batch_by_property(mobjects, get_mobject_type)

        # Display in these batches
        for batch, batch_type in batch_type_pairs:
            # check what the type is, and call the appropriate function
            for mobject_type, func in type_func_pairs:
                if batch_type == mobject_type:
                    func(batch, self.pixel_array)
Esempio n. 2
0
    def capture_mobjects(self, mobjects, **kwargs):
        mobjects = self.get_mobjects_to_display(mobjects, **kwargs)

        # Organize this list into batches of the same type, and
        # apply corresponding function to those batches
        type_func_pairs = [
            (VMobject, self.display_multiple_vectorized_mobjects),
            (PMobject, self.display_multiple_point_cloud_mobjects),
            (AbstractImageMobject, self.display_multiple_image_mobjects),
            (Mobject, lambda batch, pa: batch),  # Do nothing
        ]

        def get_mobject_type(mobject):
            for mobject_type, func in type_func_pairs:
                if isinstance(mobject, mobject_type):
                    return mobject_type
            raise Exception(
                "Trying to display something which is not of type Mobject"
            )
        batch_type_pairs = batch_by_property(mobjects, get_mobject_type)

        # Display in these batches
        for batch, batch_type in batch_type_pairs:
            # check what the type is, and call the appropriate function
            for mobject_type, func in type_func_pairs:
                if batch_type == mobject_type:
                    func(batch, self.pixel_array)
Esempio n. 3
0
 def display_multiple_vectorized_mobjects(self, vmobjects, pixel_array):
     if len(vmobjects) == 0:
         return
     batch_file_pairs = batch_by_property(
         vmobjects,
         lambda vm: vm.get_background_image_file()
     )
     for batch, file_name in batch_file_pairs:
         if file_name:
             self.display_multiple_background_colored_vmobject(batch, pixel_array)
         else:
             self.display_multiple_non_background_colored_vmobjects(batch, pixel_array)
Esempio n. 4
0
 def display_multiple_vectorized_mobjects(self, vmobjects, pixel_array):
     if len(vmobjects) == 0:
         return
     batch_file_pairs = batch_by_property(
         vmobjects,
         lambda vm: vm.get_background_image_file()
     )
     for batch, file_name in batch_file_pairs:
         if file_name:
             self.display_multiple_background_colored_vmobject(batch, pixel_array)
         else:
             self.display_multiple_non_background_colored_vmobjects(batch, pixel_array)
Esempio n. 5
0
    def capture(self, *mobjects, **kwargs):
        self.refresh_shader_uniforms()

        shader_infos = it.chain(
            *[mob.get_shader_info_list() for mob in mobjects])
        batches = batch_by_property(shader_infos, shader_info_to_id)

        for info_group, sid in batches:
            if len(info_group) == 1:
                data = info_group[0]["data"]
            else:
                data = np.hstack([info["data"] for info in info_group])

            shader = self.get_shader(info_group[0])
            render_primative = int(info_group[0]["render_primative"])
            self.render(shader, data, render_primative)
Esempio n. 6
0
 def display(self, *cvmobjects):
     batch_image_file_pairs = batch_by_property(
         cvmobjects, lambda cv: cv.get_background_image_file())
     curr_array = None
     for batch, image_file in batch_image_file_pairs:
         background_array = self.get_background_array(image_file)
         pixel_array = self.pixel_array
         self.camera.display_multiple_non_background_colored_vmobjects(
             batch, pixel_array)
         new_array = np.array(
             (background_array * pixel_array.astype('float') / 255),
             dtype=self.camera.pixel_array_dtype)
         if curr_array is None:
             curr_array = new_array
         else:
             curr_array = np.maximum(curr_array, new_array)
         self.reset_pixel_array()
     return curr_array
Esempio n. 7
0
    def get_shader_info_list(self):
        if self.shader_data_is_locked:
            return self.saved_shader_info_list

        shader_infos = it.chain(
            [self.get_shader_info()],
            *[
                submob.get_shader_info_list()
                for submob in self.submobjects
            ]
        )
        batches = batch_by_property(shader_infos, shader_info_to_id)

        result = []
        for info_group, sid in batches:
            shader_info = shader_id_to_info(sid)
            shader_info["data"] = np.hstack([info["data"] for info in info_group])
            if is_valid_shader_info(shader_info):
                result.append(shader_info)
        return result
Esempio n. 8
0
 def display(self, *cvmobjects):
     batch_image_file_pairs = batch_by_property(
         cvmobjects, lambda cv: cv.get_background_image_file()
     )
     curr_array = None
     for batch, image_file in batch_image_file_pairs:
         background_array = self.get_background_array(image_file)
         pixel_array = self.pixel_array
         self.camera.display_multiple_non_background_colored_vmobjects(
             batch, pixel_array
         )
         new_array = np.array(
             (background_array * pixel_array.astype('float') / 255),
             dtype=self.camera.pixel_array_dtype
         )
         if curr_array is None:
             curr_array = new_array
         else:
             curr_array = np.maximum(curr_array, new_array)
         self.reset_pixel_array()
     return curr_array