def test_log_names_respects_filter(self):
        time_series_logs = (('ts_1', (1., )), ('ts_2', (3., )), ('ts_3', [2.]),
                            ('ts_4', [3.]))
        fake1 = create_test_workspace(
            ws_name='fake1', time_series_logs=time_series_logs[:2])
        fake2 = create_test_workspace(
            ws_name='fake2', time_series_logs=time_series_logs[2:])

        table_workspace = WorkspaceFactory.createTable()
        fit1 = FitInformation(mock.MagicMock(), 'func1', [StaticWorkspaceWrapper(fake1.name(), fake1)],
                              StaticWorkspaceWrapper(fake1.name(), table_workspace), mock.MagicMock())
        fit2 = FitInformation(mock.MagicMock(), 'func1', [StaticWorkspaceWrapper(fake2.name(), fake2)],
                              StaticWorkspaceWrapper(fake2.name(), table_workspace), mock.MagicMock())

        self.mock_active_fit_history = mock.PropertyMock(return_value=[fit1, fit2])
        type(self.fitting_context).active_fit_history = self.mock_active_fit_history
        self.fitting_context.all_latest_fits = mock.MagicMock(return_value=[fit1, fit2])

        self.fitting_context.add_fit(fit1)
        self.fitting_context.add_fit(fit2)

        required_logs = ('ts_2', 'ts_4')
        log_names = self.fitting_context.log_names(
            filter_fn=lambda log: log.name in required_logs)
        self.assertEqual(len(required_logs), len(log_names))
        for name in required_logs:
            self.assertTrue(
                name in log_names, msg="{} not found in log list".format(name))
    def test_that_all_latest_fits_will_return_the_two_most_recent_unique_fits(
            self):
        output_ws = WorkspaceFactory.create("Workspace2D",
                                            NVectors=3,
                                            YLength=5,
                                            XLength=5)
        table_workspace = WorkspaceFactory.createTable()

        output_ws_wrap1 = StaticWorkspaceWrapper("Output1", output_ws)
        parameter_ws_wrap1 = StaticWorkspaceWrapper("Parameter1",
                                                    table_workspace)
        covariance_ws_wrap1 = StaticWorkspaceWrapper("Covariance1",
                                                     table_workspace)
        output_ws_wrap2 = StaticWorkspaceWrapper("Output2", output_ws)
        parameter_ws_wrap2 = StaticWorkspaceWrapper("Parameter2",
                                                    table_workspace)
        covariance_ws_wrap2 = StaticWorkspaceWrapper("Covariance2",
                                                     table_workspace)

        fit1 = FitInformation(["Input1"], "GausOsc", [output_ws_wrap1],
                              parameter_ws_wrap1, covariance_ws_wrap1)
        fit2 = FitInformation(["Input2"], "GausOsc", [output_ws_wrap2],
                              parameter_ws_wrap2, covariance_ws_wrap2)
        fit3 = FitInformation(["Input1"], "GausOsc", [output_ws_wrap1],
                              parameter_ws_wrap1, covariance_ws_wrap1)

        self.fitting_context.active_fit_history = [fit1, fit2, fit3]

        self.assertEqual(self.fitting_context.active_fit_history[0], fit1)
        self.assertEqual(self.fitting_context.active_fit_history[1], fit2)
        self.assertEqual(self.fitting_context.active_fit_history[2], fit3)

        # fit3 == fit1 and fit3 is more recent, so 'all_latest_fits' will only return the most recent unique fits.
        self.assertEqual(self.fitting_context.all_latest_fits()[0], fit2)
        self.assertEqual(self.fitting_context.all_latest_fits()[1], fit3)
    def test_remove_workspace_by_name_will_remove_a_fit_containing_a_specific_parameter_workspace(
            self):
        output_ws = WorkspaceFactory.create("Workspace2D",
                                            NVectors=3,
                                            YLength=5,
                                            XLength=5)
        table_workspace = WorkspaceFactory.createTable()

        output_ws_wrap1 = StaticWorkspaceWrapper("Output1", output_ws)
        parameter_ws_wrap1 = StaticWorkspaceWrapper("Parameter1",
                                                    table_workspace)
        covariance_ws_wrap1 = StaticWorkspaceWrapper("Covariance1",
                                                     table_workspace)
        output_ws_wrap2 = StaticWorkspaceWrapper("Output2", output_ws)
        parameter_ws_wrap2 = StaticWorkspaceWrapper("Parameter2",
                                                    table_workspace)
        covariance_ws_wrap2 = StaticWorkspaceWrapper("Covariance2",
                                                     table_workspace)

        fit1 = FitInformation(["Input1"], "GausOsc", [output_ws_wrap1],
                              parameter_ws_wrap1, covariance_ws_wrap1)
        fit2 = FitInformation(["Input2"], "GausOsc", [output_ws_wrap2],
                              parameter_ws_wrap2, covariance_ws_wrap2)

        self.fitting_context.active_fit_history = [fit1, fit2]

        self.fitting_context.remove_workspace_by_name("Parameter1")

        self.assertEqual(self.fitting_context.active_fit_history[0], fit2)
        self.assertEqual(self.fitting_context.all_latest_fits()[0], fit2)
    def test_logs_from_workspace_without_logs_returns_emtpy_list(self):
        fake_ws = create_test_workspace()
        fit = FitInformation(mock.MagicMock(), 'func1',
                             [StaticWorkspaceWrapper(fake_ws.name(), fake_ws)],
                             mock.MagicMock(), mock.MagicMock())

        allowed_logs = fit.log_names()
        self.assertEqual(0, len(allowed_logs))
    def test_string_log_value_from_fit_with_single_workspace(self):
        single_value_logs = [('sv_1', '5')]
        fake1 = create_test_workspace(ws_name='fake1',
                                      string_value_logs=single_value_logs)
        fit = FitInformation(mock.MagicMock(), 'func1',
                             [StaticWorkspaceWrapper(fake1.name(), fake1)],
                             mock.MagicMock(), mock.MagicMock())

        self.assertEqual(float(single_value_logs[0][1]),
                         fit.log_value(single_value_logs[0][0]))
    def test_log_names_uses_filter_fn(self):
        time_series_logs = (('ts_1', (1., )), ('ts_2', (3., )), ('ts_3', [2.]),
                            ('ts_4', [3.]))
        fake1 = create_test_workspace(ws_name='fake1',
                                      time_series_logs=time_series_logs)
        fit = FitInformation(mock.MagicMock(), 'func1',
                             [StaticWorkspaceWrapper(fake1.name(), fake1)],
                             mock.MagicMock(), mock.MagicMock())

        log_names = fit.log_names(lambda log: log.name == 'ts_1')
        self.assertEqual(1, len(log_names))
        self.assertEqual(time_series_logs[0][0], log_names[0])
    def test_has_log_returns_true_if_all_workspaces_have_the_log(self):
        time_series_logs = (('ts_1', (1., )), ('ts_2', (3., )))
        fake1 = create_test_workspace(ws_name='fake1',
                                      time_series_logs=time_series_logs)
        fake2 = create_test_workspace(ws_name='fake2',
                                      time_series_logs=time_series_logs)
        fit = FitInformation(mock.MagicMock(), 'func1', [
            StaticWorkspaceWrapper(fake1.name(), fake1),
            StaticWorkspaceWrapper(fake2.name(), fake2)
        ], mock.MagicMock(), mock.MagicMock())

        self.assertTrue(fit.has_log('ts_1'))
    def test_has_log_returns_false_if_all_workspaces_do_not_have_log(self):
        time_series_logs = [('ts_1', (1., ))]
        fake1 = create_test_workspace(ws_name='fake1',
                                      time_series_logs=time_series_logs)
        fake2 = create_test_workspace(ws_name='fake2')
        fit = FitInformation(mock.MagicMock(), 'func1', [
            StaticWorkspaceWrapper(fake1.name(), fake1),
            StaticWorkspaceWrapper(fake2.name(), fake2)
        ], mock.MagicMock(), mock.MagicMock())

        self.assertFalse(
            fit.has_log('ts_1'),
            msg='All input workspaces should have the requested log')
    def test_time_series_log_value_from_fit_with_single_workspace_uses_time_average(
            self):
        time_series_logs = \
            [('ts_1', (("2000-05-01T12:00:00", 5.),
             ("2000-05-01T12:00:10", 20.),
             ("2000-05-01T12:05:00", 30.)))]
        fake1 = create_test_workspace('fake1', time_series_logs)
        fit = FitInformation(mock.MagicMock(), 'func1',
                             [StaticWorkspaceWrapper(fake1.name(), fake1)],
                             mock.MagicMock(), mock.MagicMock())

        time_average = (10 * 5 + 290 * 20) / 300.
        self.assertAlmostEqual(time_average, fit.log_value('ts_1'), places=6)
Esempio n. 10
0
    def test_logs_for_single_workspace_return_all_time_series_logs(self):
        time_series_logs = (('ts_1', (1., )), ('ts_2', (3., )))
        single_value_logs = (('sv_1', 'val1'), ('sv_2', 'val2'))
        fake_ws = create_test_workspace(time_series_logs=time_series_logs)
        fit = FitInformation(mock.MagicMock(), 'func1',
                             [StaticWorkspaceWrapper(fake_ws.name(), fake_ws)],
                             mock.MagicMock(), mock.MagicMock())

        log_names = fit.log_names()
        for name, _ in time_series_logs:
            self.assertTrue(name in log_names,
                            msg="{} not found in log list".format(name))
        for name, _ in single_value_logs:
            self.assertFalse(name in log_names,
                             msg="{} found in log list".format(name))
Esempio n. 11
0
    def test_parameters_are_readonly(self):
        fit_info = FitInformation(mock.MagicMock(), mock.MagicMock(),
                                  mock.MagicMock(), mock.MagicMock(),
                                  mock.MagicMock())

        self.assertRaises(AttributeError, setattr, fit_info, "parameters",
                          mock.MagicMock())
Esempio n. 12
0
    def test_global_parameters_are_captured(self):
        fit_information_object = FitInformation(mock.MagicMock(),
                                                mock.MagicMock(),
                                                mock.MagicMock(),
                                                mock.MagicMock(),
                                                mock.MagicMock(), ['A'])

        self.assertEqual(['A'],
                         fit_information_object.parameters.global_parameters)
Esempio n. 13
0
    def test_empty_global_parameters_if_none_specified(self):
        fit_information_object = FitInformation(mock.MagicMock(),
                                                mock.MagicMock(),
                                                mock.MagicMock(),
                                                mock.MagicMock(),
                                                mock.MagicMock())

        self.assertEqual([],
                         fit_information_object.parameters.global_parameters)
Esempio n. 14
0
    def test_log_names_from_list_of_workspaces_gives_combined_set(self):
        time_series_logs = (('ts_1', (1., )), ('ts_2', (3., )), ('ts_3', [2.]),
                            ('ts_4', [3.]))

        fake1 = create_test_workspace(ws_name='fake1',
                                      time_series_logs=time_series_logs[:2])
        fake2 = create_test_workspace(ws_name='fake2',
                                      time_series_logs=time_series_logs[2:])
        fit = FitInformation(mock.MagicMock(), 'func1', [
            StaticWorkspaceWrapper(fake1.name(), fake1),
            StaticWorkspaceWrapper(fake2.name(), fake2)
        ], mock.MagicMock(), mock.MagicMock())

        log_names = fit.log_names()
        self.assertEqual(len(time_series_logs), len(log_names))
        for name, _ in time_series_logs:
            self.assertTrue(name in log_names,
                            msg="{} not found in log list".format(name))
Esempio n. 15
0
    def test_parameters_are_readonly(self):
        test_parameters = OrderedDict([('Height', (10., 0.4)), ('A0', (1,
                                                                       0.01)),
                                       ('Cost function', (0.1, 0.))])
        fit_params = create_test_fit_parameters(test_parameters)
        fit_info = FitInformation(mock.MagicMock(), mock.MagicMock(),
                                  mock.MagicMock(), fit_params._parameter_workspace, mock.MagicMock())

        self.assertRaises(AttributeError, setattr, fit_info, "parameters",
                          fit_params)
Esempio n. 16
0
    def test_that_all_latest_fits_will_return_the_two_most_recent_unique_fits(
            self):
        output_ws = WorkspaceFactory.create("Workspace2D",
                                            NVectors=3,
                                            YLength=5,
                                            XLength=5)
        table_workspace = WorkspaceFactory.createTable()

        output_ws_wrap1 = StaticWorkspaceWrapper("Output1", output_ws)
        parameter_ws_wrap1 = StaticWorkspaceWrapper("Parameter1",
                                                    table_workspace)
        covariance_ws_wrap1 = StaticWorkspaceWrapper("Covariance1",
                                                     table_workspace)
        output_ws_wrap2 = StaticWorkspaceWrapper("Output2", output_ws)
        parameter_ws_wrap2 = StaticWorkspaceWrapper("Parameter2",
                                                    table_workspace)
        covariance_ws_wrap2 = StaticWorkspaceWrapper("Covariance2",
                                                     table_workspace)

        fit1 = FitInformation(["Input1"], "GausOsc", [output_ws_wrap1],
                              parameter_ws_wrap1, covariance_ws_wrap1)
        fit2 = FitInformation(["Input2"], "GausOsc", [output_ws_wrap2],
                              parameter_ws_wrap2, covariance_ws_wrap2)
        fit3 = FitInformation(["Input1"], "GausOsc", [output_ws_wrap1],
                              parameter_ws_wrap1, covariance_ws_wrap1)

        self.fitting_context.tf_asymmetry_mode = True
        self.fitting_context.simultaneous_fitting_mode = True
        self.fitting_context.active_fit_history = [fit1, fit2, fit3]

        self.assertEqual(self.fitting_context.active_fit_history[0], fit1)
        self.assertEqual(self.fitting_context.active_fit_history[1], fit2)
        self.assertEqual(self.fitting_context.active_fit_history[2], fit3)

        self.assertEqual(self.fitting_context.all_latest_fits()[0], fit2)
        self.assertEqual(self.fitting_context.all_latest_fits()[1], fit3)

        self.fitting_context.tf_asymmetry_mode = False
        self.assertEqual(self.fitting_context.active_fit_history, [])
        self.assertEqual(self.fitting_context.all_latest_fits()[0], fit2)
        self.assertEqual(self.fitting_context.all_latest_fits()[1], fit3)
Esempio n. 17
0
    def test_time_series_log_value_from_fit_with_multiple_workspaces_uses_average_of_time_average(
            self):
        time_series_logs1 = \
            [('ts_1', (("2000-05-01T12:00:00", 5.),
             ("2000-05-01T12:00:10", 20.),
             ("2000-05-01T12:05:00", 30.)))]
        fake1 = create_test_workspace('fake1', time_series_logs1)
        time_series_logs2 = \
            [('ts_1', (("2000-05-01T12:00:30", 10.),
             ("2000-05-01T12:01:45", 30.),
             ("2000-05-01T12:05:00", 40.)))]
        fake2 = create_test_workspace('fake2', time_series_logs2)
        fit = FitInformation(mock.MagicMock(), 'func1', [
            StaticWorkspaceWrapper(fake1.name(), fake1),
            StaticWorkspaceWrapper(fake2.name(), fake2)
        ], mock.MagicMock(), mock.MagicMock())

        time_average1 = (10 * 5 + 290 * 20) / 300.
        time_average2 = (75 * 10 + 195 * 30) / 270.
        all_average = 0.5 * (time_average1 + time_average2)
        self.assertAlmostEqual(all_average, fit.log_value('ts_1'), places=6)
Esempio n. 18
0
    def test_can_add_fits_without_first_creating_fit_information_objects(self):
        fit_function_name = 'MuonGuassOsc'
        fit_information_object = FitInformation(mock.MagicMock(), fit_function_name, mock.MagicMock(),
                                                mock.MagicMock(), mock.MagicMock())

        self.fitting_context.all_latest_fits = mock.MagicMock(return_value=[fit_information_object])

        self.fitting_context.add_fit_from_values(mock.MagicMock(), fit_function_name, mock.MagicMock(),
                                                 mock.MagicMock(), mock.MagicMock())

        self.assertEqual(fit_information_object,
                         self.fitting_context.all_latest_fits()[0])
Esempio n. 19
0
    def test_items_can_be_added_to_fitting_context(self):
        fit_information_object = FitInformation(mock.MagicMock(),
                                                'MuonGuassOsc',
                                                mock.MagicMock(),
                                                mock.MagicMock(),
                                                mock.MagicMock())

        self.fitting_context.all_latest_fits = mock.MagicMock(return_value=[fit_information_object])

        self.fitting_context.add_fit(fit_information_object)

        self.assertEqual(fit_information_object,
                         self.fitting_context.all_latest_fits()[0])
Esempio n. 20
0
    def test_can_add_fits_with_global_parameters_without_creating_fit_information(
            self):
        parameter_workspace = mock.MagicMock()
        input_workspace = mock.MagicMock()
        fit_function_name = 'MuonGuassOsc'
        global_params = ['A']

        fit_information_object = FitInformation([input_workspace], fit_function_name, mock.MagicMock(),
                                                parameter_workspace, mock.MagicMock(), global_params)

        self.fitting_context.all_latest_fits = mock.MagicMock(return_value=[fit_information_object])

        self.fitting_context.add_fit_from_values([input_workspace], fit_function_name, mock.MagicMock(),
                                                 parameter_workspace, mock.MagicMock(), global_params)

        self.assertEqual(fit_information_object,
                         self.fitting_context.all_latest_fits()[0])
Esempio n. 21
0
def create_test_fits(input_workspaces,
                     function_name,
                     parameters,
                     output_workspace_names=None,
                     global_parameters=None):
    """
    Create a list of fits
    :param input_workspaces: The input workspaces
    :param function_name: The name of the function
    :param parameters: The parameters list
    :param output_workspace_names: A list of workspace names
    :param global_parameters: An optional list of tied parameters
    :return: A list of Fits
    """
    workspace = WorkspaceFactory.create("Workspace2D",
                                        NVectors=3,
                                        YLength=5,
                                        XLength=5)

    output_workspace_names = output_workspace_names if output_workspace_names is not None else [
        StaticWorkspaceWrapper('test-output-ws', workspace)
    ]
    # Convert parameters to fit table-like structure
    fit_table = [{
        'Name': name,
        'Value': value,
        'Error': error
    } for name, (value, error) in parameters.items()]

    fits = []
    for name in input_workspaces:
        parameter_workspace = mock.NonCallableMagicMock()
        parameter_workspace.workspace.__iter__.return_value = fit_table
        parameter_workspace.workspace_name = name + '_Parameters'
        fits.append(
            FitInformation([name], function_name,
                           output_workspace_names, parameter_workspace,
                           mock.Mock(), global_parameters))

    return fits
Esempio n. 22
0
    def test_fitfunctions_gives_list_of_unique_function_names(self):
        test_fit_function = 'MuonGuassOsc'

        self.fitting_context.all_latest_fits = mock.MagicMock(return_value=[FitInformation(mock.MagicMock(),
                                                                                           test_fit_function,
                                                                                           mock.MagicMock(),
                                                                                           mock.MagicMock(),
                                                                                           mock.MagicMock())])

        self.fitting_context.add_fit_from_values(mock.MagicMock(),
                                                 test_fit_function,
                                                 mock.MagicMock(),
                                                 mock.MagicMock(),
                                                 mock.MagicMock())
        self.fitting_context.add_fit_from_values(mock.MagicMock(),
                                                 test_fit_function,
                                                 mock.MagicMock(),
                                                 mock.MagicMock(),
                                                 mock.MagicMock())

        fit_functions = self.fitting_context.fit_function_names()

        self.assertEqual(len(fit_functions), 1)
        self.assertEqual(test_fit_function, fit_functions[0])
Esempio n. 23
0
 def test_inequality_with_globals(self):
     fit_info1 = FitInformation(mock.MagicMock(), 'MuonGuassOsc',
                                mock.MagicMock(), mock.MagicMock(), ['A'])
     fit_info2 = FitInformation(mock.MagicMock(), 'MuonGuassOsc',
                                mock.MagicMock(), mock.MagicMock(), ['B'])
     self.assertNotEqual(fit_info1, fit_info2)
Esempio n. 24
0
 def test_equality_with_globals(self):
     fit_info = FitInformation(mock.MagicMock(), 'MuonGuassOsc',
                               mock.MagicMock(), mock.MagicMock(),
                               mock.MagicMock(), ['A'])
     self.assertEqual(fit_info, fit_info)