config, completeness_table=comp_table, smoothing_kernel=IsotropicGaussian(), #increment = False, ) x = o[:, 0] y = o[:, 1] r = o[:, 4] #/ (res**2) r = np.array([np.log10(r) if r > 0 else np.NaN for r in r]) #r = np.log10(r) r[r < 0] = 0. #r = #print np.sqrt(len(x)) from map import rate_map m = rate_map(x, y, r, "a-value [frankel1995]", (nx, ny), catalogue=catalogue, origin='lower') m.show() #print output_data # export results model.write_to_csv(OUTPUT_FILE)
import numpy as np smooth = np.genfromtxt("../data_output/hmtk_bsb2013_pp_decluster_woo1996.csv", delimiter=",", skip_header=True) smooth = np.genfromtxt("../data_output/hmtk_bsb2013_decluster_frankel1995.csv", delimiter=",", skip_header=True) # smooth = np.genfromtxt("../data_output/hmtk_bsb2013_pp_decluster_woo1996.csv", delimiter=",",skip_header=True) smooth = np.genfromtxt( "/Users/pirchiner/dev/helmstetter/output/conan/rates_2_280.csv", delimiter=",", skip_header=True, skiprows=2 ) # filename = "/Users/pirchiner/dev/helmstetter/output/conan/rates_1_235.csv" o = np.array(smooth) x = o[:, 0] y = o[:, 1] r = o[:, 2] # r = o[:, 2] / (res**2) # r = np.array([ np.log10(r) if r >= 1 else 0 for r in r ]) # r = np.array([ np.log10(r) if r >= 1 else 0 for r in r ]) # print np.sqrt(len(x)) from map import rate_map # print len(x), len(y), len(r), sqrt() # m = rate_map(x, y, r, "a-value [Woo1996] $h(m) = %.2f e^{(%.2f m)}$ km"%(model.c, model.d), m = rate_map(x, y, r, "a-value [Frankel1995]", (100, 100), origin="lower") m.show()
b_val=1.0), nodal_plane_dist=None, hypo_depth_dist=None) sources.append(p) s = source_model.mtkSourceModel(identifier="04", name="PSHAB-Smoothed Helmstetter2012", sources=sources) s.serialise_to_nrml( filename="helmstetter2012/source_model_pshab_helmstetter2012.xml", use_defaults=True) o = np.array(o) x = o[:, 0] y = o[:, 1] r = o[:, 2] from map import rate_map #print len(x), len(y), len(r), sqrt() m = rate_map(x, y, r, "a-value [Helmstetter2012]", (n, n), catalogue=catalogue, origin='lower') m.show()
# config config = {"Length_Limit": 3.0, "BandWidth": 150.0, "increment": True, "magnitude_increment": 0.5} # smoothing o = model.run_analysis( catalogue, config, completeness_table=comp_table, smoothing_kernel=IsotropicGaussian(), # increment = False, ) x = o[:, 0] y = o[:, 1] r = o[:, 4] # / (res**2) r = np.array([np.log10(r) if r > 0 else np.NaN for r in r]) # r = np.log10(r) r[r < 0] = 0.0 # r = # print np.sqrt(len(x)) from map import rate_map m = rate_map(x, y, r, "a-value [frankel1995]", (nx, ny), catalogue=catalogue, origin="lower") m.show() # print output_data # export results model.write_to_csv(OUTPUT_FILE)
# ax.set_xlabel("distances [km]") # ax.set_ylabel("times [days]") # # # plt.scatter(_d, _h, s=np.exp(_m), cmap=plt.cm.RdYlGn, # marker='o', facecolors='none', edgecolors=color, #alpha=0.3, # ) # #plt.colorbar(cs) # plt.show() exit() from map import rate_map m = rate_map(x, y, r, "alpha [Helmstetter2012]", (nx, ny), s.learning_catalogue, origin='lower') m.show() # m.m.scatter(_x, _y, s=_h, # marker='o', facecolors='none', edgecolors='k', alpha=0.1 # ) # m.m.scatter(_x, _y, s=_d, # marker='o', facecolors='none', edgecolors='b', alpha=0.1 # ) m = rate_map(x, y, a, "a-value [Helmstetter2012]", (nx, ny),
a_val= _a , b_val=1.0), nodal_plane_dist=None, hypo_depth_dist=None) sources.append(p) s = source_model.mtkSourceModel(identifier="04", name = "PSHAB-Smoothed Helmstetter2012", sources = sources) s.serialise_to_nrml(filename = "helmstetter2012/source_model_pshab_helmstetter2012.xml", use_defaults = True) o = np.array(o) x = o[:, 0] y = o[:, 1] r = o[:, 2] from map import rate_map #print len(x), len(y), len(r), sqrt() m = rate_map(x, y, r, "a-value [Helmstetter2012]", (n,n), catalogue=catalogue, origin='lower') m.show()
delimiter=",", skip_header=True) smooth = np.genfromtxt("../data_output/hmtk_bsb2013_decluster_frankel1995.csv", delimiter=",", skip_header=True) #smooth = np.genfromtxt("../data_output/hmtk_bsb2013_pp_decluster_woo1996.csv", delimiter=",",skip_header=True) smooth = np.genfromtxt( "/Users/pirchiner/dev/helmstetter/output/conan/rates_2_280.csv", delimiter=",", skip_header=True, skiprows=2) #filename = "/Users/pirchiner/dev/helmstetter/output/conan/rates_1_235.csv" o = np.array(smooth) x = o[:, 0] y = o[:, 1] r = o[:, 2] #r = o[:, 2] / (res**2) #r = np.array([ np.log10(r) if r >= 1 else 0 for r in r ]) #r = np.array([ np.log10(r) if r >= 1 else 0 for r in r ]) #print np.sqrt(len(x)) from map import rate_map #print len(x), len(y), len(r), sqrt() #m = rate_map(x, y, r, "a-value [Woo1996] $h(m) = %.2f e^{(%.2f m)}$ km"%(model.c, model.d), m = rate_map(x, y, r, "a-value [Frankel1995]", (100, 100), origin='lower') m.show()
y = d[:,1] h = d[:,2] # d2 = np.genfromtxt(fname=filename2, # #comments='#', # delimiter=',', # skiprows = 2, # #skip_header = 1, # #skip_footer, # #converters, missing, missing_values, filling_values, usecols, names, # #excludelist, deletechars, replace_space, autostrip, # #case_sensitive, defaultfmt, unpack, usemask, loose, invalid_raise, # ) # # x2 = d2[:,0] # y2 = d2[:,1] # h2 = d2[:,2] #print len(x), np.sqrt(len(x)) from map import rate_map title = "PGA (poe 10%, 50 years) [ helmstetter2012 ]" # m = hazard_map(x, y, h2-h, title, # (50, 50), origin='lower') m = rate_map(x, y, h*1000, title, # (50, 50), origin='lower', (100, 100), origin='lower', catalogue=catalogue) m.show()
# plt.colorbar() # plt.show() #r = o[:, 2] / (res**2) #r = np.array([ np.log10(r) if r >= 1 else 0 for r in r ]) #r = np.array([ np.log10(r) if r >= 1 else 0 for r in r ]) #print np.sqrt(len(x)) from map import rate_map #print len(x), len(y), len(r), sqrt() #print model.c, model.d #m = rate_map(x, y, r, "a-value [Woo1996] $h(m) = %.2f e^{(%.2f m)}$ km"%(model.c, model.d), print nx, ny, len(x), len(y) m = rate_map(x, y, r, "a-value [Woo1996]", (nx,ny), catalogue=model.catalogue, origin='lower') m.show() # export results model.write_to_csv(OUTPUT_FILE) #model.write_rates(OUTPUT_FILE) #print model.grid #print model.catalogue #print model.beta #print model.data #print model.kernel #print output_data
# ax.set_title("DistanceTime Bandwidth Distribution") # ax.set_xlabel("distances [km]") # ax.set_ylabel("times [days]") # # # plt.scatter(_d, _h, s=np.exp(_m), cmap=plt.cm.RdYlGn, # marker='o', facecolors='none', edgecolors=color, #alpha=0.3, # ) # #plt.colorbar(cs) # plt.show() exit() from map import rate_map m = rate_map(x, y, r, "alpha [Helmstetter2012]", (nx,ny), s.learning_catalogue, origin='lower') m.show() # m.m.scatter(_x, _y, s=_h, # marker='o', facecolors='none', edgecolors='k', alpha=0.1 # ) # m.m.scatter(_x, _y, s=_d, # marker='o', facecolors='none', edgecolors='b', alpha=0.1 # ) m = rate_map(x, y, a, "a-value [Helmstetter2012]", (nx,ny), s.learning_catalogue, origin='lower') m.show() #print output_data