Esempio n. 1
0
class Robot():
    def __init__(self):
        self.config = read_config()
        rospy.init_node('robot')
        self.pose_array = PoseArray()
        self.pose_array.header.stamp = rospy.Time.now()
        self.pose_array.header.frame_id = 'map'
        self.pose_array.poses = []
        self.moves = self.config["move_list"]
        #Particle update values to use
        self.isFirstMove = True
        self.first_sigma_x = read.config["first_move_sigma_x"]
        self.first_sigma_y = read.config["first_move_sigma_y"]
        self.first_sigma_angle = read.config["first_move_sigma_angle"]
        self.resample_sigma_x = read.config["resample_sigma_x"]
        self.resample_sigma_y = read.config["resample_sigma_y"]
        self.resample_sigma_angle = read.config["resample_sigma_angle"]

        laser_sub = rospy.Subscriber("/base_scan", LaserScan,
                                     self.sensorUpdate)
        self.likely_pub = rospy.Publisher("/likelihood_field",
                                          OccupancyGrid,
                                          queue_size=10,
                                          latch=True)
        self.pose_pub = rospy.Publisher("/particlecloud",
                                        PoseArray,
                                        queue_size=10)
        map_sub = rospy.Subscriber("/map", OccupancyGrid, self.mapCallBack)
        rospy.sleep(1)
        self.width = self.map.width
        self.height = self.map.height

        # particle init
        for i in range(0, self.config["num_particles"]):
            x = random.randint(0, self.width)
            y = random.randint(0, self.height)
            theta = random.uniform(0, 2 * m.pi)
            obstacle = self.map.get_cell(x, y)
            if (obstacle < 0.5):
                pose = get_pose(x, y, theta)
                self.pose_array.poses.append(pose)
            else:
                i -= 1
        rospy.sleep(1)
        self.pose_pub.publish(self.pose_array)

        self.moveRobot(self.moves)

        rospy.spin()

    def mapCallBack(self, message):
        # 2
        self.map = Map(message)
        self.width = self.map.width
        self.height = self.map.height
        sig = self.config['laser_sigma_hit']
        coordinates = []
        queryPts = []
        rospy.sleep(1)
        # 3
        for col in range(0, self.width):
            for row in range(0, self.height):
                x, y = self.map.cell_position(row, col)
                cellVal = self.map.get_cell(x, y)
                if (cellVal > 0.5):
                    coordinates.append([x, y])
        self.kdt = KDTree(coordinates)

        for col in range(0, self.width):
            for row in range(0, self.height):
                dist, ind = self.kdt.query([col, row], k=1)
                gauss = (1 /
                         (sig * m.sqrt(2 * m.pi))) * ((m.e)**-(((dist)**2) /
                                                               (2 * (sig**2))))
                self.map.set_cell(col, row, gauss)
        self.likely_pub.publish(self.map.to_message())

    def sensorUpdate(self, laser):
        self.laserMsg = laser

    def moveRobot(self, motion_cmd):
        for i in range(0, len(self.moves)):  #4
            motion = self.moves[i]
            a = motion[0]
            d = motion[1]
            n = motion[2]
            move_function(a, 0)
            for t in range(0, n):
                move_function(0, d)
                updateParticles(a, d)

    def updateParticles(a, d):
        new_pose_array = []
        for j in range(0, self.config["num_particles"]):
            particle = self.pose_array.poses[j]
            x = particle[0]
            y = particle[1]
            theta = particle[2]
            if (self.isFirstMove):
                x = x + random.gauss(0, first_move_sigma_x)
                y = y + random.gauss(0, first_move_sigma_y)
                theta = theta + random.gauss(0, first_move_sigma_theta)
                self.isFirstMove = False
            x = x + d * math.cos(a)
            y = y + d * math.sin(a)
            theta = theta + a
            pose = get_pose(x, y, theta)
            new_pose_array.append(pose)

        self.pose_array.poses = new_pose_array
        #Reweight

    def motionUpdate(self, motion_cmd, particle):
        a = motion_cmd[0]
        d = motion_cmd[1]
        n = motion_cmd[2]
Esempio n. 2
0
class Robot():
	def __init__(self):
		rospy.init_node("robot")
		self.config = read_config()
		#r.seed(self.config['seed'])
		self.num_particles = self.config['num_particles']
		self.laser_sigma_hit = self.config['laser_sigma_hit']
		self.move_list = self.config['move_list']
		self.move_list_length = len(self.move_list)
		self.first_move_sigma_x = self.config['first_move_sigma_x']
		self.first_move_sigma_y = self.config['first_move_sigma_y']
		self.first_move_sigma_angle = self.config['first_move_sigma_angle']
		self.laser_z_hit = self.config['laser_z_hit']
		self.laser_z_rand = self.config['laser_z_rand']
		self.resample_sigma_x = self.config['resample_sigma_x']
		self.resample_sigma_y = self.config['resample_sigma_y']
		self.resample_sigma_theta = self.config['resample_sigma_angle']

		self.handle_map_first_called = 1
		self.move_made = 0
		self.map_data_sub = rospy.Subscriber(
			"/map", 
			OccupancyGrid, 
			self.handle_map_data
		)
		
		self.base_scan_data = rospy.Subscriber(
			"/base_scan",
			LaserScan,
			self.handle_base_scan_data
		)

		self.particle_pose_pub = rospy.Publisher(
			"/particlecloud",
			PoseArray,
			queue_size = 10
		)
		
		self.likelihood_pub = rospy.Publisher(
			"/likelihood_field",
			OccupancyGrid,
			queue_size = 1,
			latch = True
		)

		self.result_update_pub = rospy.Publisher(
			"/result_update",
			Bool,
			queue_size = 10
		)

		self.sim_complete_pub = rospy.Publisher(
			"/sim_complete",
			Bool,
			queue_size = 10
		)

		self.scan_data_avai = 0
		self.sensor_loop()



	def sensor_loop(self):
		while not rospy.is_shutdown():
			if ( self.handle_map_first_called == 0):
				#print "went in while(true) loop"
				self.create_particles()
				self.construct_field()
				#print "finished construct field"
				# publish OccupancyMap
				grid_mssg = self.my_map.to_message()
				rospy.sleep(1)
				self.likelihood_pub.publish(grid_mssg)

				self.make_all_moves()
				break
		
		rospy.sleep(1)
		self.sim_complete_pub.publish(True)
		rospy.sleep(1)
		rospy.signal_shutdown(Robot)


	def handle_base_scan_data (self, data):
		self.scan_info = data
		self.scan_data_avai = 1


	def process_scan_data (self):
		while( self.scan_data_avai == 0 ):
			rospy.sleep(0.1)
		#print "process data"
		#self.scan_data_avai = 0
		self.scan_data = self.scan_info

		for i in range (self.num_particles):
			if( np.isnan(self.particle_array[i].x) or np.isnan(self.particle_array[i].y) or np.isinf(self.particle_array[i].x) or np.isinf(self.particle_array[i].y) ):
				continue
			cell_prob1 = self.my_map.get_cell(self.particle_array[i].x, self.particle_array[i].y)
			cell_prob2 = self.true_map.get_cell(self.particle_array[i].x, self.particle_array[i].y)
			if (np.isnan(cell_prob1) or cell_prob2 == 1.0):
				self.particle_array[i].weight = 0.0
				continue

			pz_array = []
			for j in range (10):
				angle = self.particle_array[i].theta + (self.scan_data.angle_min + (self.scan_data.angle_increment * j))
				x = self.particle_array[i].x + (self.scan_data.ranges[j] * np.cos(angle))
				y = self.particle_array[i].y + (self.scan_data.ranges[j] * np.sin(angle))
				
				if( np.isnan(x) or np.isnan(y) or np.isinf(x) or np.isinf(y) ):
					#lp = 0
					pz = 0
				else:
					lp = self.my_map.get_cell( x, y )
					if( np.isnan(lp) ):
						pz = 0
					else:
						pz = (self.laser_z_hit * lp) + self.laser_z_rand

				# if( np.isnan(lp) ):
				# 	#lp = 0
				# 	pz = 0

				#pz = (self.laser_z_hit * lp) + self.laser_z_rand
				pz_array.append(pz)
			
			p_tot = 0
			for a in range (len(pz_array)):
				value_cubed = math.pow(pz_array[a],3)
				if(np.isnan(value_cubed)):
					continue
				else:	
					p_tot = p_tot + value_cubed

			#sigmoid function for calculating weight
			self.particle_array[i].weight = self.particle_array[i].weight * (1.0/(1.0+math.pow(math.e, -1*p_tot)))

		self.normalize_weight()	
				

	def create_particles(self):
		self.particle_array = []
		self.pose_array = PoseArray()		
		self.pose_array.header.stamp = rospy.Time.now()
		self.pose_array.header.frame_id = 'map'
		self.pose_array.poses = []
		for i in range (self.num_particles):
			# x and y are coordinates
			col = r.randint(0, self.my_map_width)
			row = r.randint(0, self.my_map_height)
			x, y = self.my_map.cell_position (row,col)
			theta = math.radians(r.random() * 360)
			pose = get_pose (x,y,theta)	
			particle = Particle()
			particle.x = x
			particle.y = y
			particle.theta = theta
			particle.pose = pose
			particle.weight = (1.0/self.num_particles)
			self.particle_array.append(particle)
			self.pose_array.poses.append(pose)
		
		rospy.sleep(1)	
		self.particle_pose_pub.publish(self.pose_array)


	def handle_map_data(self, data):
		if( self.handle_map_first_called == 1 ):
			self.my_map = Map(data)
			self.true_map = Map(data)
			self.my_map_width = self.my_map.width
			self.my_map_height = self.my_map.height
			self.handle_map_first_called = 0
			#print "handle map is called"	
		

	def make_all_moves(self):
		self.num_moves = len(self.move_list)	
		for i in range (self.num_moves):
			#print "make_move"
			self.make_move()
			rospy.sleep(1)
			self.result_update_pub.publish(True)
			self.move_made = self.move_made + 1


	def make_move(self):
		i = self.move_made
		#add noise to x, y, theta when first move
		move_function(self.move_list[i][0], 0)
		for j in range(len(self.particle_array)):
			self.particle_array[j].theta += math.radians(self.move_list[i][0])
			self.particle_array[i].theta = self.particle_array[i].theta % (math.radians(360))
		    
		for a in range(self.move_list[i][2]):
			move_function(0, self.move_list[i][1])
			self.particle_update(i)
			if(i == 0):
				self.particle_add_noise_first_move()

			self.process_scan_data()	
			self.resampling_particle()

	
	def normalize_weight(self):
		total = 0
		
		for k in range (self.num_particles):
			total += self.particle_array[k].weight

		for j in range (self.num_particles):
			self.particle_array[j].weight /= total
		

		total = 0
		for m in range (self.num_particles):
			total += self.particle_array[m].weight
		#print "total should be 1: ", total


	def resampling_particle(self):

		#print "resampling"
		self.weight_array = []
		new_array = []
		for i in range (self.num_particles):
			self.weight_array.append(self.particle_array[i].weight)

		for j in range (self.num_particles):
			particle = np.random.choice(self.particle_array, None, True, self.weight_array)
			new_particle = Particle()	
			new_particle.x = particle.x
			new_particle.y = particle.y
			new_particle.theta = particle.theta
			new_particle.weight = particle.weight
			new_particle.pose = particle.pose
			new_x = self.add_resample_noise(new_particle.x, self.resample_sigma_x)
			new_y = self.add_resample_noise(new_particle.y, self.resample_sigma_y)
			new_theta = self.add_resample_noise(new_particle.theta, self.resample_sigma_theta)
			new_pose = get_pose(new_x, new_y, new_theta)
			new_particle.x = new_x
			new_particle.y = new_y
			new_particle.theta = new_theta
			new_particle.pose = new_pose
			new_array.append(new_particle)
		
		for m in range (self.num_particles):
			self.particle_array[m] = new_array[m]
			self.pose_array.poses[m] = new_array[m].pose
		
		#self.normalize_weight()	
		# publish the pose array
		rospy.sleep(1)
		self.particle_pose_pub.publish(self.pose_array)


	def particle_update (self, i):
		for a in range (self.num_particles):
			update_x = self.particle_array[a].x + self.move_list[i][1] * np.cos(self.particle_array[a].theta)
			update_y = self.particle_array[a].y + self.move_list[i][1] * np.sin(self.particle_array[a].theta)
			self.particle_array[a].x = update_x
			self.particle_array[a].y = update_y
			self.particle_array[a].pose = get_pose(update_x, update_y, self.particle_array[a].theta)


	def particle_add_noise_first_move(self):
		for a in range (self.num_particles):
			self.particle_array[a].x = self.add_first_move_noise(self.particle_array[a].x, self.first_move_sigma_x)
			self.particle_array[a].y = self.add_first_move_noise(self.particle_array[a].y, self.first_move_sigma_y)
			self.particle_array[a].theta = self.add_first_move_noise(self.particle_array[a].theta, self.first_move_sigma_angle)
			self.particle_array[a].pose = get_pose(self.particle_array[a].x, self.particle_array[a].y, self.particle_array[a].theta)
			
	
	def add_first_move_noise(self, coordinate, sd):
		# noise = r.gauss(0, sd)*100.)/100.
		noise = r.gauss(0, sd)
		added_noise = coordinate + noise
		return added_noise

	def add_resample_noise(self, coordinate, sd):
		# noise = math.ceil(r.gauss(0, sd) * 100.) /100.
		noise = r.gauss(0, sd)
		added_noise = coordinate + noise
		return added_noise
	
	def construct_field(self):
		self.kdtree_array = []
		for i in range (self.my_map_height):
			for j in range (self.my_map_width):
				x, y = self.my_map.cell_position(i,j)
			        value = self.my_map.get_cell(x, y)	
				if( value == 1.0 ):
					self.kdtree_array.append([x, y])	

		self.kdtree = KDTree (self.kdtree_array)
		self.update_field()


	def update_field(self):
	
		for i in range (self.my_map_height):
			for j in range (self.my_map_width):
				coordinate = self.my_map.cell_position(i,j)
				dist, idx = self.kdtree.query([[coordinate[0],coordinate[1]]], k=1)
				new_value = self.calculate (dist)
				coordinate = self.my_map.cell_position(i,j)
				#if( self.my_map.get_cell(coordinate[0], coordinate[1]) == 0.0):
				self.my_map.set_cell(coordinate[0], coordinate[1], new_value)


	def calculate (self, distance):
		power = (-1.0 * ((distance*distance)/(2.0*self.laser_sigma_hit*self.laser_sigma_hit)))
		value = math.pow( math.e, power)
		return value	
Esempio n. 3
0
class Robot():     
    def __init__(self):
	self.config = read_config()
        rospy.init_node("robot")
	self.rate = rospy.Rate(1)
	self.rate.sleep()
	self.result_publisher = rospy.Publisher(
		"/result_update",
		Bool,
		queue_size = 10
	)
	self.complete_publisher = rospy.Publisher(
		"/sim_complete",
		Bool,
		queue_size = 10
	)
	self.poseArray_publisher = rospy.Publisher(
		"/particlecloud",
		PoseArray,
		queue_size = 10
	)
	self.likelihood_publisher = rospy.Publisher(
		"/likelihood_field",
		OccupancyGrid,
		queue_size = 10,
		latch = True
	)
	self.map_service = rospy.Subscriber(            
		"/map",
		OccupancyGrid,
		self.handle_map_message
	)
	self.laser_service = rospy.Subscriber(            
		"/base_scan",
		LaserScan,
		self.handle_laser_message
	)
	self.initialized = False
	self.mess = Bool()
	self.mess.data = True
	self.originX = 0
	self.originY = 0
	self.width = 0
	self.height = 0
	self.resolution = 0
	self.numPart = self.config['num_particles']
	self.laser_sigma_hit = self.config['laser_sigma_hit']
	self.laser_z_hit = self.config['laser_z_hit']
	self.laser_z_rand = self.config['laser_z_rand']
	self.move_list = self.config['move_list']
	self.first_move_sigma_x = self.config['first_move_sigma_x']
	self.first_move_sigma_y = self.config['first_move_sigma_y']
	self.first_move_sigma_angle = self.config['first_move_sigma_angle']
	self.resample_sigma_x = self.config['resample_sigma_x']
	self.resample_sigma_y = self.config['resample_sigma_y']
	self.resample_sigma_angle = self.config['resample_sigma_angle']
	self.mapLH = None
	self.mapOri = None
	self.particleX = []
	self.particleY = []
	self.particleTheta = []
	self.particleWeight = []
	self.pose_array = None
	self.initializeParticle()
	self.move()
	rospy.spin()

    def get_nearest_obstacle(self, x, y, k=1):
	# Check if KDTree is initialized
	if not hasattr(self, 'obstacle_tree'):
		self._initialize_obstacle_KDTree()

	# Query for the given location
	dist, ind = self.obstacle_tree.query((x, y), k)
		
	# Transform index to actual locations
	obstacles = self.obstacle_tree.get_arrays()[0]
	obst = [obstacles[i] for i in ind]
		
	return dist, obst

   


    def handle_map_message(self, message):
	if(self.initialized == False):
		self.resolution = message.info.resolution
		self.origin_x = message.info.origin.position.x
        	self.origin_y = message.info.origin.position.y
		self.width = message.info.width
		self.height = message.info.height
		self.pose_array = PoseArray()
		self.pose_array.header.stamp = rospy.Time.now()
		self.pose_array.header.frame_id = 'map'
		self.pose_array.poses = []
		self.mapOri = Map(message)
		self.mapLH = Map(message)
		self.initialized = True
    def initializeParticle(self):
	self.rate.sleep()
	for i in range(self.numPart):
		
		x = random.uniform(0,self.width)
		y = random.uniform(0,self.height)
				
		while(self.mapOri.get_cell(x,y) != 0):                            
			x = random.uniform(0,self.width)
			y = random.uniform(0,self.height)
			
		self.particleX.append(x)
		self.particleY.append(y)
		self.particleTheta.append(random.uniform(0,2*np.pi)) 
		self.particleWeight.append(1/self.numPart)
		self.pose_array.poses.append(get_pose(self.particleX[i],self.particleY[i],self.particleTheta[i]))
	self.poseArray_publisher.publish(self.pose_array)
	obstalces = filter(lambda x: self.mapOri.get_cell(x[0], x[1]) != 0.0, [(x, y) for x in range(self.width) for y in range(self.height)])
	self.obstacle_tree = KDTree(obstalces, leaf_size=20)
	self.mapLH.grid = np.array([[GaussianPDF(self.get_nearest_obstacle(x,y)[0][0][0], 0, self.laser_sigma_hit)
							for x in range(self.width)]
						for y in range(self.height)])
	self.likelihood_publisher.publish(self.mapLH.to_message())

    def move(self):
	first_move = True
	for moveStep in self.move_list:
		angle = moveStep[0]
		dist = moveStep[1]
		num = moveStep[2]
		print(angle)
		print(dist)
		print(num)
		if(first_move == True):
			move_function(angle,0)
			wTot = 0
			wSoFar = 0
			resampleProb = []
			resampleX = []
			resampleY = []
			resampleAngle = []
			resampleWeight = []
			for i in range(self.numPart):
				self.particleTheta[i] = self.particleTheta[i]+(angle / 180.0 * self.angle_max)+random.gauss(0,self.first_move_sigma_angle)
				self.particleX[i] = (self.particleX[i]+random.gauss(0,self.first_move_sigma_x))
				self.particleY[i] = (self.particleY[i]+random.gauss(0,self.first_move_sigma_y))
				particle_poss = self.mapLH.get_cell(self.particleX[i], self.particleY[i])
				if math.isnan(particle_poss) or particle_poss == 1.0:
					self.particleWeight[i] = 0.0  
				wTot += self.particleWeight[i]
			for i in range(self.numPart):
				self.particleWeight[i] = self.particleWeight[i]/wTot
				wSoFar += self.particleWeight[i]
				resampleProb.append(wSoFar)
			self.pose_array.header.stamp = rospy.Time.now()
			self.pose_array.poses = []
			for i in range(self.numPart):
				re = random.random()
				index = -1
				for j in range(self.numPart):
					if(re<=resampleProb[j]):
						index = j
						break
				resampleX.append(self.particleX[index]+random.gauss(0,self.resample_sigma_x))
				resampleY.append(self.particleY[index]+random.gauss(0,self.resample_sigma_y))
				resampleAngle.append(self.particleTheta[index]+random.gauss(0,self.resample_sigma_angle))
				resampleWeight.append(self.particleWeight[index])
				self.pose_array.poses.append(get_pose(resampleX[i],resampleY[i],resampleAngle[i]))
			self.particleX = resampleX
			self.particleY = resampleY
			self.particleTheta = resampleAngle
			self.particleWeight = resampleWeight
			self.poseArray_publisher.publish(self.pose_array)
						
			
			for manyTimes in range(num): 
				move_function(0,dist)
				wTot = 0
				wSoFar = 0
				resampleProb = []
				resampleX = []
				resampleY = []
				resampleAngle = []
				resampleWeight = []
				for i in range(self.numPart):
					self.particleX[i] = self.particleX[i]+random.gauss(0,self.first_move_sigma_x)
					self.particleY[i] = self.particleY[i]+random.gauss(0,self.first_move_sigma_y)
					self.particleTheta[i] = self.particleTheta[i]+random.gauss(0,self.first_move_sigma_angle)
					particle_poss = self.mapLH.get_cell(self.particleX[i], self.particleY[i])
					if math.isnan(particle_poss) or particle_poss == 1.0:
						self.particleWeight[i] = 0.0  
					else:
						self.particleX[i] = self.particleX[i]+math.cos(self.particleTheta[i])*dist
						self.particleY[i] = self.particleY[i]+math.sin(self.particleTheta[i])*dist
						index = 0
						pTot = 1
						for z in self.ranges:
							laserAngle = self.angle_min + self.angle_incr*index
							index+=1
							if(z>=self.range_min and z<=self.range_max):
								xz = self.particleX[i]+math.cos(self.particleTheta[i]+laserAngle)*z
								yz = self.particleY[i]+math.sin(self.particleTheta[i]+laserAngle)*z
								prob = self.mapLH.get_cell(xz,yz)
								if(math.isnan(prob)):
									prob = self.laser_z_rand
								else:
									prob = self.laser_z_hit * prob + self.laser_z_rand
								pTot *= prob
						self.particleWeight[i] = self.particleWeight[i]*(pTot+0.001) 
					wTot += self.particleWeight[i]
				for i in range(self.numPart):
					self.particleWeight[i] = self.particleWeight[i]/wTot
					wSoFar += self.particleWeight[i]
					resampleProb.append(wSoFar)
				self.pose_array.header.stamp = rospy.Time.now()
				self.pose_array.poses = []
				for i in range(self.numPart):
					re = random.random()
					index = -1
					for j in range(self.numPart):
						if(re<=resampleProb[j]):
							index = j
							break
					resampleX.append(self.particleX[index]+random.gauss(0,self.resample_sigma_x))
					resampleY.append(self.particleY[index]+random.gauss(0,self.resample_sigma_y))
					resampleAngle.append(self.particleTheta[index]+random.gauss(0,self.resample_sigma_angle))
					resampleWeight.append(self.particleWeight[index])
					self.pose_array.poses.append(get_pose(resampleX[i],resampleY[i],resampleAngle[i]))
				self.particleX = resampleX
				self.particleY = resampleY
				self.particleTheta = resampleAngle
				self.particleWeight = resampleWeight
				self.poseArray_publisher.publish(self.pose_array)	 	

			first_move = False
		else:
			move_function(angle,0)
			wTot = 0
			wSoFar = 0
			resampleProb = []
			resampleX = []
			resampleY = []
			resampleAngle = []
			resampleWeight = []
			for i in range(self.numPart):
				self.particleTheta[i] = self.particleTheta[i]+(angle / 180.0 * self.angle_max)
				particle_poss = self.mapLH.get_cell(self.particleX[i], self.particleY[i])
				if math.isnan(particle_poss) or particle_poss == 1.0:
					self.particleWeight[i] = 0.0  
				wTot += self.particleWeight[i]
			for i in range(self.numPart):
				self.particleWeight[i] = self.particleWeight[i]/wTot
				wSoFar += self.particleWeight[i]
				resampleProb.append(wSoFar)
			self.pose_array.header.stamp = rospy.Time.now()
			self.pose_array.poses = []
			for i in range(self.numPart):
				re = random.random()
				index = -1
				for j in range(self.numPart):
					if(re<=resampleProb[j]):
						index = j
						break
				resampleX.append(self.particleX[index]+random.gauss(0,self.resample_sigma_x))
				resampleY.append(self.particleY[index]+random.gauss(0,self.resample_sigma_y))
				resampleAngle.append(self.particleTheta[index]+random.gauss(0,self.resample_sigma_angle))
				resampleWeight.append(self.particleWeight[index])
				self.pose_array.poses.append(get_pose(resampleX[i],resampleY[i],resampleAngle[i]))
			self.particleX = resampleX
			self.particleY = resampleY
			self.particleTheta = resampleAngle
			self.particleWeight = resampleWeight
			self.poseArray_publisher.publish(self.pose_array)
						
			
			for manyTimes in range(num): 
				move_function(0,dist)
				wTot = 0
				wSoFar = 0
				resampleProb = []
				resampleX = []
				resampleY = []
				resampleAngle = []
				resampleWeight = []
				for i in range(self.numPart):
					particle_poss = self.mapLH.get_cell(self.particleX[i], self.particleY[i])
					if math.isnan(particle_poss) or particle_poss == 1.0:
						self.particleWeight[i] = 0.0  
					else:
						self.particleX[i] = (self.particleX[i]+math.cos(self.particleTheta[i])*dist)
						self.particleY[i] = (self.particleY[i]+math.sin(self.particleTheta[i])*dist) 
						index = 0
						pTot = 1
						for z in self.ranges:
							laserAngle = self.angle_min + self.angle_incr*index
							index+=1
							if(z>=self.range_min and z<=self.range_max):
								xz = self.particleX[i]+math.cos(self.particleTheta[i]+laserAngle)*z
								yz = self.particleY[i]+math.sin(self.particleTheta[i]+laserAngle)*z
								prob = self.mapLH.get_cell(xz,yz)
								if(math.isnan(prob)):
									prob = self.laser_z_rand
								else:
									prob = self.laser_z_hit * prob + self.laser_z_rand
								pTot *= prob
						self.particleWeight[i] = self.particleWeight[i]*(-pTot+0.001)
					wTot += self.particleWeight[i]
				for i in range(self.numPart):
					self.particleWeight[i] = self.particleWeight[i]/wTot
					wSoFar += self.particleWeight[i]
					resampleProb.append(wSoFar)
				self.pose_array.header.stamp = rospy.Time.now()
				self.pose_array.poses = []
				for i in range(self.numPart):
					re = random.random()
					index = -1
					for j in range(self.numPart):
						if(re<=resampleProb[j]):
							index = j
							break
					resampleX.append(self.particleX[index]+random.gauss(0,self.resample_sigma_x))
					resampleY.append(self.particleY[index]+random.gauss(0,self.resample_sigma_y))
					resampleAngle.append(self.particleTheta[index]+random.gauss(0,self.resample_sigma_angle))
					resampleWeight.append(self.particleWeight[index])
					self.pose_array.poses.append(get_pose(resampleX[i],resampleY[i],resampleAngle[i]))
				self.particleX = resampleX
				self.particleY = resampleY
				self.particleTheta = resampleAngle
				self.particleWeight = resampleWeight
				self.poseArray_publisher.publish(self.pose_array)			
		self.result_publisher.publish(self.mess)
	self.complete_publisher.publish(self.mess)

	
    def handle_laser_message(self,message):
	self.angle_min = message.angle_min
	self.angle_max = message.angle_max
	self.angle_incr = message.angle_increment
	self.range_min = message.range_min
	self.range_max = message.range_max
	self.ranges = message.ranges	
Esempio n. 4
0
class Robot():
    def __init__(self):
        """ This will read the config files and set up the different
        listeners and what not
        """
        self.config = read_config()
        self.moveList = self.config['move_list']
        self.particles = list()
        self.isMapInit = False

        random.seed(self.config['seed'])
        np.random.seed(self.config['seed'])

        self.baseMap = None
        self.likelihood_field = None

        self.laserScanFlag = False
        self.laserScanData = None

        self.robotInit()

        rospy.init_node("robot")

        self.start()

    def robotInit(self):
        """ Init Subscribers and Publishers"""
        self.mapSub = rospy.Subscriber(
                "/map",
                OccupancyGrid,
                self.mapInit
        )
        self.laserScanSub = rospy.Subscriber(
                "/base_scan",
                LaserScan,
                self.laserScanUpdate
        )
#Do I need latch? TODO
        self.particleCloudPub = rospy.Publisher(
                "/particlecloud",
                PoseArray,
                queue_size = 10
        )
        self.likelihoodFieldPub = rospy.Publisher(
                "/likelihood_field",
                OccupancyGrid,
                queue_size = 10,
                latch = True
        )
        self.resultUpdatePub = rospy.Publisher(
                "/result_update",
                Bool,
                queue_size = 10
        )
        self.simCompletePub = rospy.Publisher(
                "/sim_complete",
                Bool,
                queue_size = 10
        )

    def mapInit(self, mapData):
        if not self.isMapInit:
            self.isMapInit = True
            self.baseMap = Map(mapData)
            self.likelihood_field = Map(mapData)

            lsh = self.config['laser_sigma_hit']

            width = self.baseMap.width
            height = self.baseMap.height

            occPoints = list()
            points = list()
            unoccPoints = list()

            for r in range(height):
                for c in range(width):
                    x, y = self.baseMap.cell_position(r, c)
                    if self.baseMap.get_cell(x, y) == 1:
                        occPoints.append((x,y))
                    else:
                        unoccPoints.append((x,y))
                    points.append((x,y))

            self.occPointsSet = set(occPoints)
            occPoints = np.array(occPoints)
            points = np.array(points)

            self.occPoints = occPoints
            self.points = points
            self.unoccPoints = unoccPoints

            self.tree = KDTree(occPoints)
            distance, index = self.tree.query(points, k = 1)

            print "Points ", len(points), " should match ", width*height

            for d, i, p in zip(distance, index, points):
                x, y = p
                self.likelihood_field.set_cell(x, y, likeProb(d, lsh))

            self.likelihoodFieldPub.publish(self.likelihood_field.to_message())
            self.particleInit()

    def particleInit(self):
        default_weight = 1.0/(self.config["num_particles"])
        numPart = self.config["num_particles"]

        randPoints = np.random.choice(range(len(self.unoccPoints)), numPart, replace=True)
        randPoints = [self.unoccPoints[i] for i in randPoints]
        for x, y in randPoints:
            p = Particle(x, y, m.pi*random.random(), default_weight)
            self.particles.append(p)
        self.publishParticles()
        self.move()

    def publishParticles(self):
        pose_array = self.poseArrayTemplate()
        for p in self.particles:
            pose_array.poses.append(p.get_pose())
        self.particleCloudPub.publish(pose_array)

    def laserScanUpdate(self, laserScanMessage):
        if not self.laserScanFlag:
            self.laserScanFlag = True
            self.laserScanData = laserScanMessage

    def move(self):
        moves = self.config["move_list"]
        for i, (a, d, n) in enumerate(moves):
            print "Move %d, Turn at Angle %.2f, then move %.2f meters %d times." % (i, a, d, n)
            print "First turn at angle %.2f" % a
            helper_functions.move_function(a, 0)
            self.particles = self.updateMove(self.particles, 0.0, a)
            self.publishParticles()

            self.particles = self.commit(self.particles)
            self.publishParticles()

            for __ in xrange(n):
                print "Moving forward with distance %d" % d
                helper_functions.move_function(0, d)

                self.particles = self.updateMove(self.particles, d, 0.0)
                self.publishParticles()

                self.particles = self.commit(self.particles)
                self.publishParticles()
            self.resultUpdatePub.publish(True)
        self.simCompletePub.publish(True)
        rospy.sleep(10)
        rospy.signal_shutdown("sim complete")

    def updateMove(self, parts, d, t):
	p = parts[0]
        toret = list()
        rad = (m.pi * t)/180.0
        for p in parts:
            theta = p.theta + rad
            x = p.x + d*m.cos(p.theta)
            y = p.y + d*m.sin(p.theta)
	    particle = Particle(x, y, theta, p.weight)
            toret.append(particle)
        return toret

    def reweight(self, parts):
        zhit = self.config["laser_z_hit"]
        zrand = self.config["laser_z_rand"]
        lsd = self.getLaserScanData()
        increment = lsd.angle_increment
	startAngle = lsd.angle_min
        newParts = list()
        for p in parts:
            x, y, theta, q = p.x, p.y, p.theta, p.weight
            iswall = self.baseMap.get_cell(x, y)
            if m.isnan(iswall):
                q = 0.0
            elif iswall == 1.0:
                q = 0.0

	    currincrement = 0.0
            for r in lsd.ranges:
                if q == 0.0:
                    break
                currx = x + r * m.cos(theta + startAngle + currincrement)
                curry = y + r * m.sin(theta + startAngle + currincrement)
                prob = self.likelihood_field.get_cell(currx, curry)
                if m.isnan(prob):
                    prob = 0.0
                q *= zhit * prob + zrand
                q += zrand
                currincrement += increment
	    p.weight = q
            newParts.append(p)
        return self.normalize(newParts)

    def normalize(self, parts):
	#ALL WEIGHTS GETTING SO SMALL ITS BECOMING 0
        weights = [p.weight * 1000 if not m.isnan(p.weight) else 0.0 for p in parts]
        normalizer = sum(weights)
        if m.isnan(normalizer):
            print "GOFFYY!!!!"
        else:
            weights = [w/normalizer if not m.isnan(w/normalizer) else 0.0 for w in weights]
            #why do this?! you don't use it again...
	    print "TTTTTT", weights.count(0), len(weights)
	    normalizer = sum(weights)
        for i, __ in enumerate(parts):
            parts[i].weight = weights[i]
        return parts

    def resample(self, parts):
        res = list()
        weights = [p.weight for p in parts]
        print "SUMMM", sum(weights)
        randPoints = np.random.choice(parts, self.config["num_particles"], replace=True, p=weights)
        for p in randPoints:
            noise_x = random.gauss(0, self.config["resample_sigma_x"])
            noise_y = random.gauss(0, self.config["resample_sigma_y"])
            noise_theta = random.gauss(0, self.config["resample_sigma_angle"])

            p.x += noise_x
            p.y += noise_y
            p.theta += noise_theta

            res.append(p)
        return res


    def commit(self, parts):
        return self.resample(self.reweight(parts))


    def getLaserScanData(self):
        self.laserScanFlag = False
        while not self.laserScanFlag:
            continue
        return self.laserScanData

    def poseArrayTemplate(self):
        pose_array = PoseArray()
        pose_array.header.stamp = rospy.Time.now()
        pose_array.header.frame_id = 'map'
        pose_array.poses =[]
        return pose_array

    def start(self):
        rospy.sleep(5)
        rospy.spin()
Esempio n. 5
0
class Robot():
   def __init__(self):
      
      rospy.init_node('robot_node', anonymous = True)
      self.map_inited = 0;
      self.move_num = 0
      self.first_move = True

      self.init_map_sub()
      self.init_pubs()
      rospy.sleep(3) #make sure we create the Map object in init_subs
      self.init_config() 
      random.seed(self.seed)
      self.init_particles()
      self.publish_particles()

      self.init_likelihood_map()

      self.start_moves()

      if self.move_num >= self.total_moves:
         self.handle_shutdown()

      rospy.spin()

   def handle_shutdown(self):
      self.sim_complete.publish(True) 
      rospy.sleep(3)
      rospy.signal_shutdown("Done with Moves")

   def init_config(self):
      self.config             = read_config()
      self.num_particles      = self.config["num_particles"]
      self.map_width          = self.myMap.width
      self.map_height         = self.myMap.height
      self.laser_sig_hit      = self.config["laser_sigma_hit"]
      self.move_list          = self.config["move_list"]
      self.fm_sigma_x         = self.config["first_move_sigma_x"]
      self.fm_sigma_y         = self.config["first_move_sigma_y"]
      self.fm_sigma_ang       = self.config["first_move_sigma_angle"]
      self.total_moves        = len(self.move_list)
      self.laser_z_hit        = self.config["laser_z_hit"]
      self.laser_z_rand       = self.config["laser_z_rand"]
      self.resamp_sig_x       = self.config["resample_sigma_x"]
      self.resamp_sig_y       = self.config["resample_sigma_y"]
      self.resamp_sig_a       = self.config["resample_sigma_angle"]
      self.turned             = False
      self.seed               = self.config["seed"]

   def init_map_sub(self):
      self.map_sub  = rospy.Subscriber('/map', OccupancyGrid, self.handle_map_reply)
      self.scan_sub = rospy.Subscriber('/base_scan', LaserScan, self.handle_scan)


   def init_pubs(self):
      self.particle_cloud_pub = rospy.Publisher('/particlecloud', PoseArray, 
                                                queue_size = 10, latch = True)
      self.likelihood_pub     = rospy.Publisher('/likelihood_field', OccupancyGrid, 
                                                queue_size = 10, latch = True)
      self.result_pub         = rospy.Publisher('/result_update', Bool,
                                                queue_size = 10)
      self.sim_complete       = rospy.Publisher('/sim_complete', Bool, 
                                                queue_size = 10)

   def handle_map_reply(self, grid):
      if self.map_inited     == 0:
         self.myMap          = Map(grid) 
         self.likelihood_map = Map(grid)
         self.map_inited     = 1

   def handle_scan(self, scan):
      self.scan    = scan
      self.num_sensors = (scan.angle_max - scan.angle_min) / scan.angle_increment
      self.scan_ls = scan.ranges
      self.scan_ang_min = scan.angle_min

   def init_likelihood_map(self):
      occupied_points     = self.get_occupied_points()
      near_ls             = self.get_nearest_neighbors(occupied_points)
      it                  = 0
      for x in range (0, self.map_width):
         for y in range (0, self.map_height):
            val = self.gaussian_likelihood(near_ls[it][0], 0, self.laser_sig_hit)
            self.likelihood_map.set_cell(x, y, val)
            it+= 1
      self.publish_likelihood_map()

   def get_occupied_points(self):
      occupied_points = []
      for x in range ( 0, self.map_width):
         for y in range ( 0, self.map_height):
            if self.likelihood_map.get_cell(x, y) == 1:
               occupied_points.append( [x , y])
      return occupied_points

   def publish_likelihood_map(self):
      message = self.likelihood_map.to_message()
      self.likelihood_pub.publish(message)
      

   def gaussian_likelihood(self, x1, x2, sigma):
      #alpha = 1 / ( sigma * math.sqrt( 2 * math.pi ))
      ex    = math.exp(-(x1 - x2)**2 / 2 * sigma**2 )
      res   =  ex
      return res

   def get_nearest_neighbors(self, occu_pt):
      allpts = []
      for x in range (0, self.map_width):
         for y in range (0, self.map_height):
            allpts.append([x,y])
      allpts = np.array(allpts)

      x    = np.array(occu_pt)
      kdt  = KDTree(x, leaf_size=30, metric='euclidean') 
      dist, ind = kdt.query(allpts, k=1, return_distance=True)
      return dist


   def publish_particles(self):
      pose_arr = PoseArray()
      pose_arr.header.stamp = rospy.Time.now()
      pose_arr.header.frame_id = 'map'
      pose_arr.poses = []
      for p in self.particle_ls:
         pose_arr.poses.append(p.pose) 

      self.particle_cloud_pub.publish(pose_arr) 

   def start_moves(self):
      move_count = 0
      while move_count < self.total_moves: 
         self.move_robot()
         self.publish_particles()
         self.turned = False
         move_count += 1
         self.result_pub.publish(True)

   def move_robot(self):
      angle, dist, steps = self.get_move() 
      #turn robot
      helper_functions.move_function(angle, 0)
      p_theta_mov = math.radians(angle)

      for p in self.particle_ls:
         if self.first_move:
             p_theta_mov = random.gauss(p_theta_mov, self.fm_sigma_ang)      
         p.set_theta( p.theta+p_theta_mov)
         p.update_pose()

      #move robot
      for n in range (0, steps):
         helper_functions.move_function(0, dist)

         #move particles?

         self.move_particles()
         self.publish_particles()

         self.reweigh_all_particles()
         self.publish_particles()

         self.resample_particles()
         self.publish_particles()

         self.publish_particles()


   def get_move(self):
      self.current_move = self.move_list[self.move_num]
      self.move_num += 1
      return self.current_move

   def resample_particles(self):
      pick_ls = [] 
      for p in self.particle_ls:
         p_amount = [copy.deepcopy(p)] * int(round(self.num_particles * p.weight))
         pick_ls.append(p_amount)
      picked_ls_flat = list(itertools.chain(*pick_ls))

      new_ls = []
      for i in range (0, self.num_particles):
         picked       = copy.deepcopy(random.choice(picked_ls_flat))
         x     = random.gauss(picked.x, self.resamp_sig_x)
         y     = random.gauss(picked.y, self.resamp_sig_y)
         #theta = np.random.normal(picked.theta, self.resamp_sig_a, 1)
         theta = random.gauss(picked.theta, self.resamp_sig_a)

         resampled_p  = Particle(x, y, theta, picked.weight)

         #picked.update_pose()
         new_ls.append(resampled_p)

      self.particle_ls = copy.deepcopy(new_ls)

   def reweigh_all_particles(self):
      Lp = 0 
      self.laser_ind = 0
      for p in self.particle_ls:
         p_tot = 0
         num_shit_sensors = 0

         for s in self.scan_ls:
            laser_angle_local = self.scan_ang_min+ self.scan.angle_increment*self.laser_ind
            x = s*math.cos(laser_angle_local+p.theta) + p.x
            y = s*math.sin(laser_angle_local+p.theta) + p.y
            Lp = self.likelihood_map.get_cell(x, y)
            if math.isnan(Lp):
               num_shit_sensors += 1
               Lp = 0
            Pz    = self.laser_z_hit*Lp + self.laser_z_rand
            p_tot += Pz**3
            self.laser_ind += 1

         if p.x < 0 or p.y < 0 or p.x >= self.map_width or p.y >= self.map_height:
            p.weight = 0
         elif self.likelihood_map.get_cell(p.x, p.y) >=0.9:
            p.weight = 0
         elif num_shit_sensors / self.num_sensors > 0.6:
            p.weight = 0
         else:
            p.weight = p.weight *(1/(1+math.exp(-1*p_tot)))
      self.normalize_particles()
      
   def normalize_particles(self):
      su = 0
      for p in self.particle_ls:
         su += p.weight
      for p in self.particle_ls:
         p.weight = p.weight / su

   def move_particles(self):
      #TODO: list comprehension moved_list = [
      ang, dist, steps      = self.current_move
      angle_rad = math.radians(ang)
      
      #move every particle
      for p in self.particle_ls:
         x_bar = dist*math.cos(p.theta)
         y_bar = dist*math.sin(p.theta)

         if self.first_move:
            #add noise
            angl, x, y = self.handle_first_particle_move(x_bar, y_bar,p.theta)
            p.x = p.x + x
            p.y = p.y + y
            p.update_pose()

         else:
            p.x = p.x + x_bar
            p.y = p.y + y_bar
            p.update_pose()

      self.first_move = False

   def handle_first_particle_move(self, x_bar, y_bar, angle):
      mu      = 0
      sig_x                   = self.fm_sigma_x
      sig_y                   = self.fm_sigma_y
      sig_ang                 = self.fm_sigma_ang
      theta = random.gauss(angle, sig_ang)
      x     = random.gauss(x_bar,     sig_x)
      y     = random.gauss(y_bar,     sig_y)
      return theta, x, y
         
         
   def distance_moved_in_xy(self, d, n, theta):
      return x, y

   def gaussian(self, x, x2, sigma):
      alpha = 1 / ( sigma * math.sqrt( 2 * math.pi ))
      ex    = math.exp(-(x - x2)**2 / 2 * sigma**2 )
      res   =  alpha * ex
      return res

   def init_particles(self):
      self.particle_ls = []
      for i in range (0, self.num_particles):
         r_x     = random.uniform(0, self.map_width)
         r_y     = random.uniform(0, self.map_height)
         r_theta = random.uniform(0, 2*math.pi)
         p       = Particle(r_x, r_y, r_theta, 1./self.num_particles)

         self.particle_ls.append(p)
Esempio n. 6
0
class Robot():
    def __init__(self):
        self.config = read_config()
        rospy.init_node('robot')
        self.pose_array = PoseArray()
        self.pose_array.header.stamp = rospy.Time.now()
        self.pose_array.header.frame_id = 'map'
        self.pose_array.poses = []

        self.move_list = self.config["move_list"]
        #Particle update values to use
        self.first_sigma_x = self.config["first_move_sigma_x"]
        self.first_sigma_y = self.config["first_move_sigma_y"]
        self.first_sigma_angle = self.config["first_move_sigma_angle"]
        self.resample_sigma_x = self.config["resample_sigma_x"]
        self.resample_sigma_y = self.config["resample_sigma_y"]
        self.resample_sigma_angle = self.config["resample_sigma_angle"]
        self.isFirstMove = True

        self.particleList = []
        self.posePtr = []
        self.tally = 0
        

        laser_sub = rospy.Subscriber(
            "/base_scan",
            LaserScan,
            self.senseCallBack
        )
        self.likely_pub = rospy.Publisher(
            "/likelihood_field",
            OccupancyGrid,
            queue_size = 10,
            latch = True
        )
        self.pose_pub = rospy.Publisher(
            "/particlecloud",
            PoseArray,
            queue_size = 10
        )
        self.result_pub = rospy.Publisher(
            "/result_update",
            Bool,
            queue_size = 10
        )
        self.sim_pub = rospy.Publisher(
            "/sim_complete",
            Bool,
            queue_size = 10
        )
        map_sub = rospy.Subscriber(
            "/map",
            OccupancyGrid,
            self.mapCallBack
        )
        rospy.sleep(1)
        self.width = self.map.width
        self.height = self.map.height

        # particle init
        i = 0
        self.numParticles = self.config["num_particles"]
        while(i < self.numParticles):
            i += 1
            x = random.randint(0, self.width)
            y = random.randint(0, self.height)
            theta = random.uniform(0, 2*m.pi)
            obstacle = self.map.get_cell(x,y)
            
            if(obstacle < 0.5):
                pose = get_pose(x,y,theta)
                self.pose_array.poses.append(pose)
                p = Particle(x,y,theta, 1)
                self.particleList.append(p)
            else:
                i -= 1
        self.pose_pub.publish(self.pose_array)
        rospy.wait_for_message("/likelihood_field", OccupancyGrid)
        self.moveRobot()
        self.sim_pub.publish(True)
        rospy.is_shutdown()
        rospy.spin()

    def sigmoid(self, x):
        y = (1.0 / (1.0 + m.exp(-x)))
        return y

    def mapCallBack(self, message):
        self.map = Map(message)
        self.whocares = Map(message)
        self.width = self.map.width
        self.height = self.map.height
        self.sig = self.config['laser_sigma_hit']
        coordinates = []
        rospy.sleep(1)

        for col in range(0, self.width):
            for row in range(0, self.height):
                x, y = self.map.cell_position(row, col)
                self.cellVal = self.map.get_cell(x,y)
                if (self.cellVal > 0.5):
                    coordinates.append([x,y])
        self.kdt = KDTree(coordinates)

        for col in range(0, self.width):
            for row in range(0, self.height):
                dist, ind = self.kdt.query([col,row], k=1)
                gauss = (1/(self.sig*m.sqrt(2*m.pi)))*((m.e)**-(((dist)**2)/(2*(self.sig**2))))
                self.map.set_cell(col, row, gauss)
        self.likely_pub.publish(self.map.to_message())

    def senseCallBack(self, laser):
        self.lsr = laser

    def moveRobot(self):
        for t in range(0, len(self.move_list)):
            move = self.move_list[t]
            #move robot
            a = move[0]
            d = move[1]
            n = move[2]
            move_function(a,0)
            self.first = True
            for s in range(0, n):
                move_function(0, d)
                self.motion_update(move)
                self.first = False
                self.isFirstMove = False
                self.pose_array.poses = self.posePtr
                self.pose_pub.publish(self.pose_array)
                self.posePtr = []
                self.sensor_update()
                self.resample()
            self.result_pub.publish(True)

    #For one particle
    def motion_update(self, mv):
        for i in range(0, len(self.particleList)):
            part_in = self.particleList[i]
            x = part_in.getX()
            y = part_in.getY()
            theta = part_in.getTheta()
            weight = part_in.getWeight()
            if (self.isFirstMove):
                x = x + random.gauss(0, self.first_sigma_x)
                y = y + random.gauss(0, self.first_sigma_y)
                theta = theta + random.gauss(0, self.first_sigma_angle)
            if (self.first):
                theta = theta + m.radians(mv[0])
            x = x + mv[1] * m.cos(theta)
            y = y + mv[1] * m.sin(theta)
            new_pose = get_pose(x,y,theta)
            self.posePtr.append(new_pose)
            part_in.setX(x)
            part_in.setY(y)
            part_in.setTheta(theta)    
            if (m.isnan(self.whocares.get_cell(x,y)) or self.whocares.get_cell(x,y) == 1.0):
                part_in.setWeight(0.0)

    def sensor_update(self):
        z_rand = self.config["laser_z_rand"]
        z_hit = self.config["laser_z_hit"]
        normalizer = 0
        #Laser Scan
        for p in range(0, len(self.particleList)):
            particle = self.particleList[p]
            if(self.map.get_cell(particle.getX(),particle.getY()) == 1):
                particle.setWeight(0.0)
            ptot = 0
            noNAN = 0
            for l in range(0,len(self.lsr.ranges)):
                scan = self.lsr.ranges[l]
                if(scan != self.lsr.range_min and scan != self.lsr.range_max):
                    angle = self.lsr.angle_min + (self.lsr.angle_increment * l) + particle.getTheta()
                    x_pos = scan * m.cos(angle) + particle.getX()
                    y_pos = scan * m.sin(angle) + particle.getY()
                    lp = self.map.get_cell(x_pos,y_pos)
                    if (m.isnan(lp)):
                        noNAN += 1
                    else: 
                        if (noNAN > (len(self.lsr.ranges)*.75)):
                            particle.setWeight(0.0)
                        pz = (z_hit * lp) + z_rand
                        ptot += (pz**2)
                    
            old_weight = particle.getWeight() 
            new_weight = old_weight * self.sigmoid(ptot)
            normalizer += new_weight
            new_particle = Particle(particle.getX(),particle.getY(),particle.getTheta(),new_weight)
            self.particleList[p] = new_particle
        
        for q in range(0, len(self.particleList)):
            particle = self.particleList[q]
            weight = particle.getWeight() / normalizer
            particle.setWeight(weight)

    def resample(self):
        good_weights = []
        good_particles = []
        for w in range(0, len(self.particleList)):
            particle = self.particleList[w]
            value = self.whocares.get_cell(particle.getX(),particle.getY())
            if (not (value == 1.0 or m.isnan(value))):
                good_particles.append(self.particleList[w])
                good_weights.append(self.particleList[w].getWeight())
        
        # new_particles = np.random.choice(self.particleList, self.numParticles, True, weights)
        for p in range(0,len(self.particleList)):
            particle = self.particleList[p]
            value = self.whocares.get_cell(particle.getX(),particle.getY())
            if (value == 1.0 or m.isnan(value)):
                dingledangle = np.random.choice(good_particles, 1, True, good_weights)
                particle = dingledangle[0]
            x = particle.getX() + random.gauss(0,self.resample_sigma_x)
            y = particle.getY() + random.gauss(0,self.resample_sigma_y)
            theta = particle.getTheta() + random.gauss(0,self.resample_sigma_angle)
            new_particle = Particle(x,y,theta,particle.getWeight())
            self.particleList[p] = new_particle
Esempio n. 7
0
class Robot():
    def __init__(self):
        self.config = read_config()
        rospy.init_node("robot")
        self.rate = rospy.Rate(1)
        self.rate.sleep()
        self.result_publisher = rospy.Publisher("/result_update",
                                                Bool,
                                                queue_size=10)
        self.complete_publisher = rospy.Publisher("/sim_complete",
                                                  Bool,
                                                  queue_size=10)
        self.poseArray_publisher = rospy.Publisher("/particlecloud",
                                                   PoseArray,
                                                   queue_size=10)
        self.likelihood_publisher = rospy.Publisher("/likelihood_field",
                                                    OccupancyGrid,
                                                    queue_size=10,
                                                    latch=True)
        self.map_service = rospy.Subscriber("/map", OccupancyGrid,
                                            self.handle_map_message)
        self.laser_service = rospy.Subscriber("/base_scan", LaserScan,
                                              self.handle_laser_message)
        self.initialized = False
        self.mess = Bool()
        self.mess.data = True
        self.originX = 0
        self.originY = 0
        self.width = 0
        self.height = 0
        self.resolution = 0
        self.numPart = self.config['num_particles']
        self.laser_sigma_hit = self.config['laser_sigma_hit']
        self.laser_z_hit = self.config['laser_z_hit']
        self.laser_z_rand = self.config['laser_z_rand']
        self.move_list = self.config['move_list']
        self.first_move_sigma_x = self.config['first_move_sigma_x']
        self.first_move_sigma_y = self.config['first_move_sigma_y']
        self.first_move_sigma_angle = self.config['first_move_sigma_angle']
        self.resample_sigma_x = self.config['resample_sigma_x']
        self.resample_sigma_y = self.config['resample_sigma_y']
        self.resample_sigma_angle = self.config['resample_sigma_angle']
        self.mapLH = None
        self.mapOri = None
        self.particleX = []
        self.particleY = []
        self.particleTheta = []
        self.particleWeight = []
        self.pose_array = None
        self.initializeParticle()
        self.move()
        rospy.spin()

    def get_nearest_obstacle(self, x, y, k=1):
        # Check if KDTree is initialized
        if not hasattr(self, 'obstacle_tree'):
            self._initialize_obstacle_KDTree()

        # Query for the given location
        dist, ind = self.obstacle_tree.query((x, y), k)

        # Transform index to actual locations
        obstacles = self.obstacle_tree.get_arrays()[0]
        obst = [obstacles[i] for i in ind]

        return dist, obst

    def handle_map_message(self, message):
        if (self.initialized == False):
            self.resolution = message.info.resolution
            self.origin_x = message.info.origin.position.x
            self.origin_y = message.info.origin.position.y
            self.width = message.info.width
            self.height = message.info.height
            self.pose_array = PoseArray()
            self.pose_array.header.stamp = rospy.Time.now()
            self.pose_array.header.frame_id = 'map'
            self.pose_array.poses = []
            self.mapOri = Map(message)
            self.mapLH = Map(message)
            self.initialized = True

    def initializeParticle(self):
        self.rate.sleep()
        for i in range(self.numPart):

            x = random.uniform(0, self.width)
            y = random.uniform(0, self.height)

            while (self.mapOri.get_cell(x, y) != 0):
                x = random.uniform(0, self.width)
                y = random.uniform(0, self.height)

            self.particleX.append(x)
            self.particleY.append(y)
            self.particleTheta.append(random.uniform(0, 2 * np.pi))
            self.particleWeight.append(1 / self.numPart)
            self.pose_array.poses.append(
                get_pose(self.particleX[i], self.particleY[i],
                         self.particleTheta[i]))
        self.poseArray_publisher.publish(self.pose_array)
        obstalces = filter(lambda x: self.mapOri.get_cell(x[0], x[1]) != 0.0,
                           [(x, y) for x in range(self.width)
                            for y in range(self.height)])
        self.obstacle_tree = KDTree(obstalces, leaf_size=20)
        self.mapLH.grid = np.array([[
            GaussianPDF(
                self.get_nearest_obstacle(x, y)[0][0][0], 0,
                self.laser_sigma_hit) for x in range(self.width)
        ] for y in range(self.height)])
        self.likelihood_publisher.publish(self.mapLH.to_message())

    def move(self):
        first_move = True
        for moveStep in self.move_list:
            angle = moveStep[0]
            dist = moveStep[1]
            num = moveStep[2]
            print(angle)
            print(dist)
            print(num)
            if (first_move == True):
                move_function(angle, 0)
                wTot = 0
                wSoFar = 0
                resampleProb = []
                resampleX = []
                resampleY = []
                resampleAngle = []
                resampleWeight = []
                for i in range(self.numPart):
                    self.particleTheta[i] = self.particleTheta[i] + (
                        angle / 180.0 * self.angle_max) + random.gauss(
                            0, self.first_move_sigma_angle)
                    self.particleX[i] = (
                        self.particleX[i] +
                        random.gauss(0, self.first_move_sigma_x))
                    self.particleY[i] = (
                        self.particleY[i] +
                        random.gauss(0, self.first_move_sigma_y))
                    particle_poss = self.mapLH.get_cell(
                        self.particleX[i], self.particleY[i])
                    if math.isnan(particle_poss) or particle_poss == 1.0:
                        self.particleWeight[i] = 0.0
                    wTot += self.particleWeight[i]
                for i in range(self.numPart):
                    self.particleWeight[i] = self.particleWeight[i] / wTot
                    wSoFar += self.particleWeight[i]
                    resampleProb.append(wSoFar)
                self.pose_array.header.stamp = rospy.Time.now()
                self.pose_array.poses = []
                for i in range(self.numPart):
                    re = random.random()
                    index = -1
                    for j in range(self.numPart):
                        if (re <= resampleProb[j]):
                            index = j
                            break
                    resampleX.append(self.particleX[index] +
                                     random.gauss(0, self.resample_sigma_x))
                    resampleY.append(self.particleY[index] +
                                     random.gauss(0, self.resample_sigma_y))
                    resampleAngle.append(
                        self.particleTheta[index] +
                        random.gauss(0, self.resample_sigma_angle))
                    resampleWeight.append(self.particleWeight[index])
                    self.pose_array.poses.append(
                        get_pose(resampleX[i], resampleY[i], resampleAngle[i]))
                self.particleX = resampleX
                self.particleY = resampleY
                self.particleTheta = resampleAngle
                self.particleWeight = resampleWeight
                self.poseArray_publisher.publish(self.pose_array)

                for manyTimes in range(num):
                    move_function(0, dist)
                    wTot = 0
                    wSoFar = 0
                    resampleProb = []
                    resampleX = []
                    resampleY = []
                    resampleAngle = []
                    resampleWeight = []
                    for i in range(self.numPart):
                        self.particleX[i] = self.particleX[i] + random.gauss(
                            0, self.first_move_sigma_x)
                        self.particleY[i] = self.particleY[i] + random.gauss(
                            0, self.first_move_sigma_y)
                        self.particleTheta[
                            i] = self.particleTheta[i] + random.gauss(
                                0, self.first_move_sigma_angle)
                        particle_poss = self.mapLH.get_cell(
                            self.particleX[i], self.particleY[i])
                        if math.isnan(particle_poss) or particle_poss == 1.0:
                            self.particleWeight[i] = 0.0
                        else:
                            self.particleX[i] = self.particleX[i] + math.cos(
                                self.particleTheta[i]) * dist
                            self.particleY[i] = self.particleY[i] + math.sin(
                                self.particleTheta[i]) * dist
                            index = 0
                            pTot = 1
                            for z in self.ranges:
                                laserAngle = self.angle_min + self.angle_incr * index
                                index += 1
                                if (z >= self.range_min
                                        and z <= self.range_max):
                                    xz = self.particleX[i] + math.cos(
                                        self.particleTheta[i] + laserAngle) * z
                                    yz = self.particleY[i] + math.sin(
                                        self.particleTheta[i] + laserAngle) * z
                                    prob = self.mapLH.get_cell(xz, yz)
                                    if (math.isnan(prob)):
                                        prob = self.laser_z_rand
                                    else:
                                        prob = self.laser_z_hit * prob + self.laser_z_rand
                                    pTot *= prob
                            self.particleWeight[i] = self.particleWeight[i] * (
                                pTot + 0.001)
                        wTot += self.particleWeight[i]
                    for i in range(self.numPart):
                        self.particleWeight[i] = self.particleWeight[i] / wTot
                        wSoFar += self.particleWeight[i]
                        resampleProb.append(wSoFar)
                    self.pose_array.header.stamp = rospy.Time.now()
                    self.pose_array.poses = []
                    for i in range(self.numPart):
                        re = random.random()
                        index = -1
                        for j in range(self.numPart):
                            if (re <= resampleProb[j]):
                                index = j
                                break
                        resampleX.append(
                            self.particleX[index] +
                            random.gauss(0, self.resample_sigma_x))
                        resampleY.append(
                            self.particleY[index] +
                            random.gauss(0, self.resample_sigma_y))
                        resampleAngle.append(
                            self.particleTheta[index] +
                            random.gauss(0, self.resample_sigma_angle))
                        resampleWeight.append(self.particleWeight[index])
                        self.pose_array.poses.append(
                            get_pose(resampleX[i], resampleY[i],
                                     resampleAngle[i]))
                    self.particleX = resampleX
                    self.particleY = resampleY
                    self.particleTheta = resampleAngle
                    self.particleWeight = resampleWeight
                    self.poseArray_publisher.publish(self.pose_array)

                first_move = False
            else:
                move_function(angle, 0)
                wTot = 0
                wSoFar = 0
                resampleProb = []
                resampleX = []
                resampleY = []
                resampleAngle = []
                resampleWeight = []
                for i in range(self.numPart):
                    self.particleTheta[i] = self.particleTheta[i] + (
                        angle / 180.0 * self.angle_max)
                    particle_poss = self.mapLH.get_cell(
                        self.particleX[i], self.particleY[i])
                    if math.isnan(particle_poss) or particle_poss == 1.0:
                        self.particleWeight[i] = 0.0
                    wTot += self.particleWeight[i]
                for i in range(self.numPart):
                    self.particleWeight[i] = self.particleWeight[i] / wTot
                    wSoFar += self.particleWeight[i]
                    resampleProb.append(wSoFar)
                self.pose_array.header.stamp = rospy.Time.now()
                self.pose_array.poses = []
                for i in range(self.numPart):
                    re = random.random()
                    index = -1
                    for j in range(self.numPart):
                        if (re <= resampleProb[j]):
                            index = j
                            break
                    resampleX.append(self.particleX[index] +
                                     random.gauss(0, self.resample_sigma_x))
                    resampleY.append(self.particleY[index] +
                                     random.gauss(0, self.resample_sigma_y))
                    resampleAngle.append(
                        self.particleTheta[index] +
                        random.gauss(0, self.resample_sigma_angle))
                    resampleWeight.append(self.particleWeight[index])
                    self.pose_array.poses.append(
                        get_pose(resampleX[i], resampleY[i], resampleAngle[i]))
                self.particleX = resampleX
                self.particleY = resampleY
                self.particleTheta = resampleAngle
                self.particleWeight = resampleWeight
                self.poseArray_publisher.publish(self.pose_array)

                for manyTimes in range(num):
                    move_function(0, dist)
                    wTot = 0
                    wSoFar = 0
                    resampleProb = []
                    resampleX = []
                    resampleY = []
                    resampleAngle = []
                    resampleWeight = []
                    for i in range(self.numPart):
                        particle_poss = self.mapLH.get_cell(
                            self.particleX[i], self.particleY[i])
                        if math.isnan(particle_poss) or particle_poss == 1.0:
                            self.particleWeight[i] = 0.0
                        else:
                            self.particleX[i] = (
                                self.particleX[i] +
                                math.cos(self.particleTheta[i]) * dist)
                            self.particleY[i] = (
                                self.particleY[i] +
                                math.sin(self.particleTheta[i]) * dist)
                            index = 0
                            pTot = 1
                            for z in self.ranges:
                                laserAngle = self.angle_min + self.angle_incr * index
                                index += 1
                                if (z >= self.range_min
                                        and z <= self.range_max):
                                    xz = self.particleX[i] + math.cos(
                                        self.particleTheta[i] + laserAngle) * z
                                    yz = self.particleY[i] + math.sin(
                                        self.particleTheta[i] + laserAngle) * z
                                    prob = self.mapLH.get_cell(xz, yz)
                                    if (math.isnan(prob)):
                                        prob = self.laser_z_rand
                                    else:
                                        prob = self.laser_z_hit * prob + self.laser_z_rand
                                    pTot *= prob
                            self.particleWeight[i] = self.particleWeight[i] * (
                                -pTot + 0.001)
                        wTot += self.particleWeight[i]
                    for i in range(self.numPart):
                        self.particleWeight[i] = self.particleWeight[i] / wTot
                        wSoFar += self.particleWeight[i]
                        resampleProb.append(wSoFar)
                    self.pose_array.header.stamp = rospy.Time.now()
                    self.pose_array.poses = []
                    for i in range(self.numPart):
                        re = random.random()
                        index = -1
                        for j in range(self.numPart):
                            if (re <= resampleProb[j]):
                                index = j
                                break
                        resampleX.append(
                            self.particleX[index] +
                            random.gauss(0, self.resample_sigma_x))
                        resampleY.append(
                            self.particleY[index] +
                            random.gauss(0, self.resample_sigma_y))
                        resampleAngle.append(
                            self.particleTheta[index] +
                            random.gauss(0, self.resample_sigma_angle))
                        resampleWeight.append(self.particleWeight[index])
                        self.pose_array.poses.append(
                            get_pose(resampleX[i], resampleY[i],
                                     resampleAngle[i]))
                    self.particleX = resampleX
                    self.particleY = resampleY
                    self.particleTheta = resampleAngle
                    self.particleWeight = resampleWeight
                    self.poseArray_publisher.publish(self.pose_array)
            self.result_publisher.publish(self.mess)
        self.complete_publisher.publish(self.mess)

    def handle_laser_message(self, message):
        self.angle_min = message.angle_min
        self.angle_max = message.angle_max
        self.angle_incr = message.angle_increment
        self.range_min = message.range_min
        self.range_max = message.range_max
        self.ranges = message.ranges