Esempio n. 1
0
def exampleB2_5(G=40, T= 1.174, gamma = 42.58, alpha = np.arange(180,60,-1)):
    #% Effect of Crushers
    
    #G = 40;		% mT/m;
    #T = 1.174;	% ms.
    #gamma = 42.58	% kHz/mT
    #alpha = [180:-1:60];
    
    #% 2 cycles/mm.
    
    
    x = np.arange(0,1,0.01)/1000;	#% m.
    
    Grot = 360*x*G*T*gamma; 	#% Rotation due to gradient at each voxel.
    
    Ms=[[1],[0],[0]];		#% Mstart
    
    Mend = []
    for alpha_i in alpha:
     for Grot_i in Grot:
      M = Ms;
      M = zrot(Grot_i)*M;		#% Crusher 1
      M = xrot(alpha_i)*M;		#% Refocusing pulse.
      M = zrot(Grot_i)*M;		#% Crusher 2
      Mend.append(M) #  Mend(:,k)=M;  I think this is what you want
     #end;
    
     #%figure(3);
     #%plot(abs(Mend(1,:)+i*Mend(2,:)));
     figure(1);
     Mxy = Mend[0]+1j*Mend[1];
     plot(x*1000,real(Mxy),'k--'); hold on;
     axis([np.min(x)*1000, np.max(x)*1000, -1.2, 1.2]);
     plot([np.min(x), np.max(x)]*1000,[1 1]*np.abs(mean(Mxy)),'b-'); 
     #hold off;
     #grid on;
     xlabel('Position (mm)'); ylabel('Signal');
     legend('M_{xy}','Avg M_{xy}');
     tt = sprintf('%d Degree Refocusing Angle',alpha(n)); title(tt);
     setprops();
     drawnow;
     #%fig2tiff('crush',n);
     print(n)
     Mse(n) = np.abs(np.mean(Mxy));
    
     
    
    figure(2);
    plot(alpha,Mse); #grid on; 
    xlabel('Refocusing Angle (deg)');
    ylabel('Spin Echo Signal'); 
    title('Spin Echo vs Refoc. Angle');
    a = plt.gca(); 
    #axis([a(1:2) 0 1]);
    mrs.setprops();
import pandas as pd

# load the dataset and view top five records
dataset = pd.read_csv('Mall_Customer.csv')
x = dataset.iloc[:, [3, 4]].values
dataset.head()

# using the elbow method to find the optimal number of clusters
from sklearn.cluster import KMeans
wcss = []
for i in range(1, 11):
    kmeans = KMeans(n_clusters=i, init='k-means++', random_state=42)
    kmeans.fit(x)
    wcss.append(kmeans.inertia_)
plt.plot(range(1, 11), wcss)
plt.title('The Elbow Method')
plt.xlabel('Number of clusters')
plt.ylabel('WCSS')
plt.show()

# train the K-Mean model using dataset
kmeans = KMeans(n_clusters=5, init='k-means++', random_state=42)
y_kmeans = kmeans.fit_predict(x)

# visualising the clusters
plt.scatter(x[y_hc == 0, 0],
            x[y_hc == 0, 1],
            s=100,
            c='red',
            label='Cluster 1')
plt.scatter(x[y_hc == 1, 0],
Esempio n. 3
0
    layers.Dense(512, activation="relu", input_shape=(None, data.shape[-1])))
model1.add(layers.Dropout(0.5))
model1.add(layers.LSTM(32, dropout=0.5, return_sequences=True))
model1.add(layers.LSTM(64, dropout=0.5))
model1.add(layers.Dense(512, activation="relu"))
model1.add(layers.Dropout(0.5))
model1add(layers.Dense(8, activation="softmax"))
model1.summary()

model1.compile(optimizer=optimizers.RMSprop(lr=0.0001),
               loss="categorical_crossentropy",
               metrics=["acc"])
history1 = model1.fit_generator(train_gen,
                                steps_per_epoch=train_steps,
                                epochs=200,
                                validation_data=val_gen,
                                validation_steps=val_steps)

loss = history1.history["loss"]
val_loss = history1.history["val_loss"]
acc = history1.history["acc"]
val_acc = history1.history["val_acc"]
epochs = range(1, len(loss) + 1)
plt.figure(figsize=(10, 5))
plt.plot(epochs, acc, "b", c="black", label="acc")
plt.plot(epochs, val_acc, "b", c="green", label="val_acc")
plt.title("Train and validation curve")
plt.legend()

model1.save("T1001.h5")
# load the dataset and view top five records
dataset = pd.read_csv('Mall_Customer.csv')
x = dataset.iloc[:, [3, 4]].values

# train the Hierarchical Clustering model using dataset
from sklearn.cluster import AgglomerativeClustering
hc = AgglomerativeClustering(n_clusters = 5, affinity = 'euclidian', linkage = 'ward')
y_hc = hc.fit_predict(x)

# visualising the clusters
plt.scatter(x[y_hc == 0, 0], x[y_hc == 0, 1], s = 100, c = 'red', label = 'Cluster 1')
plt.scatter(x[y_hc == 1, 0], x[y_hc == 1, 1], s = 100, c = 'blue', label = 'Cluster 2')
plt.scatter(x[y_hc == 2, 0], x[y_hc == 2, 1], s = 100, c = 'green', label = 'Cluster 3')
plt.scatter(x[y_hc == 3, 0], x[y_hc == 3, 1], s = 100, c = 'cyan', label = 'Cluster 4')
plt.scatter(x[y_hc == 4, 0], x[y_hc == 4, 1], s = 100, c = 'magenta', label = 'Cluster 5')
plt.title('Clusters of customers')
plt.xlabel('Annual Income (k$)')
plt.ylabel('Spending Score (1-100)')
plt.legend()
plt.show()

# https://www.kaggle.com/shwetabh123/mall-customers



# 10 Models for Clustering
    # K-Means
    # Affinity Propagation
    # BIRCH
    # DBSCAN
    # Mini Batch K-Means