def save_global_map(): globalmappos = np.empty([0, 2]) mapfactors = np.full(len(pynclt.sessions), np.nan) poleparams = np.empty([0, 6]) for isession, s in enumerate(pynclt.sessions): print(s) session = pynclt.session(s) istart, imid, iend = get_map_indices(session) localmappos = session.T_w_r_gt_velo[imid, :2, 3] if globalmappos.size == 0: imaps = range(localmappos.shape[0]) else: imaps = [] for imap in range(localmappos.shape[0]): distance = np.linalg.norm( localmappos[imap] - globalmappos, axis=1).min() if distance > remapdistance: imaps.append(imap) globalmappos = np.vstack([globalmappos, localmappos[imaps]]) mapfactors[isession] = np.true_divide(len(imaps), len(imid)) with progressbar.ProgressBar(max_value=len(imaps)) as bar: for iimap, imap in enumerate(imaps): scans = [] for iscan in range(istart[imap], iend[imap]): xyz, _ = session.get_velo(iscan) scan = o3.PointCloud() scan.points = o3.Vector3dVector(xyz) scans.append(scan) T_w_mc = np.identity(4) T_w_mc[:3, 3] = session.T_w_r_gt_velo[imid[imap], :3, 3] T_w_m = T_w_mc.dot(T_mc_m) T_m_w = util.invert_ht(T_w_m) T_m_r = np.matmul( T_m_w, session.T_w_r_gt_velo[istart[imap]:iend[imap]]) occupancymap = mapping.occupancymap( scans, T_m_r, mapshape, mapsize) localpoleparams = poles.detect_poles(occupancymap, mapsize) localpoleparams[:, :2] += T_w_m[:2, 3] poleparams = np.vstack([poleparams, localpoleparams]) bar.update(iimap) xy = poleparams[:, :2] a = poleparams[:, [4]] boxes = np.hstack([xy - 0.5 * a, xy + 0.5 * a]) clustermeans = np.empty([0, 5]) scores = [] for ci in cluster.cluster_boxes(boxes): ci = list(ci) if len(ci) < n_mapdetections: continue clustermeans = np.vstack([clustermeans, np.average( poleparams[ci, :-1], axis=0, weights=poleparams[ci, -1])]) scores.append(np.mean(poleparams[ci, -1])) clustermeans = np.hstack([clustermeans, np.array(scores).reshape([-1, 1])]) globalmapfile = os.path.join(pynclt.resultdir, get_globalmapname() + '.npz') np.savez(globalmapfile, polemeans=clustermeans, mapfactors=mapfactors, mappos=globalmappos) plot_global_map(globalmapfile)
def save_local_maps(sessionname, visualize=False): print(sessionname) session = pynclt.session(sessionname) util.makedirs(session.dir) istart, imid, iend = get_map_indices(session) maps = [] with progressbar.ProgressBar(max_value=len(iend)) as bar: for i in range(len(iend)): scans = [] for idx, val in enumerate(range(istart[i], iend[i])): xyz, _ = session.get_velo(val) scan = o3.geometry.PointCloud() scan.points = o3.utility.Vector3dVector(xyz) scans.append(scan) T_w_mc = util.project_xy( session.T_w_r_odo_velo[imid[i]].dot(T_r_mc)) T_w_m = T_w_mc.dot(T_mc_m) T_m_w = util.invert_ht(T_w_m) T_w_r = session.T_w_r_odo_velo[istart[i]:iend[i]] T_m_r = np.matmul(T_m_w, T_w_r) occupancymap = mapping.occupancymap(scans, T_m_r, mapshape, mapsize) poleparams = poles.detect_poles(occupancymap, mapsize) if visualize: cloud = o3.geometry.PointCloud() for T, scan in zip(T_w_r, scans): s = copy.copy(scan) s.transform(T) cloud.points.extend(s.points) mapboundsvis = util.create_wire_box(mapextent, [0.0, 0.0, 1.0]) mapboundsvis.transform(T_w_m) polevis = [] for j in range(poleparams.shape[0]): x, y, zs, ze, a = poleparams[j, :5] pole = util.create_wire_box([a, a, ze - zs], color=[1.0, 1.0, 0.0]) T_m_p = np.identity(4) T_m_p[:3, 3] = [x - 0.5 * a, y - 0.5 * a, zs] pole.transform(T_w_m.dot(T_m_p)) polevis.append(pole) o3.visualization.draw_geometries(polevis + [cloud, mapboundsvis]) map = { 'poleparams': poleparams, 'T_w_m': T_w_m, 'istart': istart[i], 'imid': imid[i], 'iend': iend[i] } maps.append(map) bar.update(i) np.savez(os.path.join(session.dir, get_localmapfile()), maps=maps)
def save_local_maps(seq): print(seq) sequence = dataset.sequence(seq) seqdir = os.path.join(result_dir, '{:03d}'.format(seq)) util.makedirs(seqdir) istart, imid, iend = get_map_indices(sequence) maps = [] with progressbar.ProgressBar(max_value=len(iend)) as bar: for i in range(len(iend)): scans = [] for idx, val in enumerate(range(istart[i], iend[i])): velo = sequence.get_velo(val) scan = o3.geometry.PointCloud() scan.points = o3.utility.Vector3dVector(velo[:, :3]) scan.colors = o3.utility.Vector3dVector( util.intensity2color(velo[:, 3])) scans.append(scan) T_m_w = T_m_mc.dot(T_mc_cam0).dot( util.invert_ht(sequence.poses[imid[i]])) T_w_velo = np.matmul(sequence.poses[istart[i]:iend[i]], sequence.calib.T_cam0_velo) T_m_velo = np.matmul(T_m_w, T_w_velo) occupancymap = mapping.occupancymap(scans, T_m_velo, mapshape, mapsize) poleparams = poles.detect_poles(occupancymap, mapsize) # accuscan = o3.PointCloud() # for j in range(len(scans)): # scans[j].transform(T_w_velo[j]) # accuscan.points.extend(scans[j].points) # o3.draw_geometries([accuscan]) # import ndshow # ndshow.matshow(occupancymap.transpose([2, 0, 1])) map = { 'poleparams': poleparams, 'istart': istart[i], 'imid': imid[i], 'iend': iend[i] } maps.append(map) bar.update(i) np.savez(os.path.join(seqdir, localmapfile), maps=maps)