def markov(): tweetbot = MarkovBot() dirname = os.path.dirname(os.path.abspath(__file__)) data1 = os.path.join(dirname, 'positiveTweets.txt') data2 = os.path.join(dirname, '1liner.txt') data3 = os.path.join(dirname, '10ondate.txt') data4 = os.path.join(dirname, 'forCachetes.txt') #data5 = os.path.join(dirname, 'book3.txt') #data6 = os.path.join(dirname, 'book4.txt') data7 = os.path.join(dirname, 'jokes.txt') #data8 = os.path.join(dirname, 'book4.txt') tweetbot.read(data1) tweetbot.read(data2) tweetbot.read(data3) tweetbot.read(data4) #tweetbot.read(data5) #tweetbot.read(data6) tweetbot.read(data7) #tweetbot.read(data8) my_first_text = tweetbot.generate_text(25, seedword=['life', 'motivation', 'happy', 'bullying']) print("tweetbot says:") print(my_first_text)
import os from markovbot import MarkovBot # # # # # # INITIALISE # Initialise a MarkovBot instance tweetbot = MarkovBot() # Get the current directory's path dirname = os.path.dirname(os.path.abspath(__file__)) # Construct the path to the book book = os.path.join(dirname, u'Freud_Dream_Psychology.txt') # Make your bot read the book! tweetbot.read(book) # # # # # # TEXT GENERATION # Generate text by using the generate_text method: # The first argument is the length of your text, in number of words # The 'seedword' argument allows you to feed the bot some words that it # should attempt to use to start its text. It's nothing fancy: the bot will # simply try the first, and move on to the next if he can't find something # that works. my_first_text = tweetbot.generate_text(25, seedword=[u'dream', u'psychoanalysis']) # Print your text to the console print(u'\ntweetbot says: "%s"' % (my_first_text))
from markovbot import MarkovBot # # # # # # INITIALISE # Initialise a MarkovBot instance tweetbot = MarkovBot() # Get the current directory's path dirname = os.path.dirname(os.path.abspath(__file__)) # Construct the path to the book book = os.path.join(dirname, u'Freud_Dream_Psychology.txt') # Make your bot read the book! tweetbot.read(book) # # # # # # TEXT GENERATION # Generate text by using the generate_text method: # The first argument is the length of your text, in number of words # The 'seedword' argument allows you to feed the bot some words that it # should attempt to use to start its text. It's nothing fancy: the bot will # simply try the first, and move on to the next if he can't find something # that works. my_first_text = tweetbot.generate_text(25, seedword=[u'dream', u'psychoanalysis']) # Print your text to the console print(u'\ntweetbot says: "%s"' % (my_first_text))
from random import randint from markovbot import MarkovBot import os bot = MarkovBot() book = os.path.join(os.path.dirname(os.path.abspath(__file__)), 'realdonaldtrump.txt') # Make your bot read the text! bot.read(book) # Choose how many tweets you want to generate tweets_to_generate = 150 for x in range(0, tweets_to_generate): # len of the new tweets that will be generated, in words tweet_len = randint(10, 25) # generating tweet, based on its len and seedwords! tweet = bot.generate_text(tweet_len, seedword=[]) # writting to our generated sentences to the file the poster will use later sentences_list = open("generated_sentences.txt", "a") sentences_list.write(tweet + "\n") sentences_list.close()
fThree = (fTwo.replace("SCENE", " ")) fFour = (fThree.replace("ACT", " ")) finalDataShake = fFour ''' '''freud''' ''' i need to clean this up a lot and add organon - make methods more recycle --> code is stale - many authors at once with func - add learning method --> possible neural net? I want to make training worthwhile.... - add a score to output? compare results to text --> give score and only release the 'good' ones -> but also tell the model that it did a good or bad job ''' dirname = os.path.dirname(os.path.abspath(__file__)) freudText = os.path.join(dirname, 'training_txt/freudCompleteWorks.txt') bot.read(freudText) freudTweets = bot.generate_text(25) ''' fTwo = (re.sub('[-,_[@?#*"%;()}0-9]', " ", data)) fThree = (fTwo.replace("SCENE" "ACT", " ")) finalSText = fThree''' ''' really????? this is no good, going to fix this week ''' shakeText = os.path.join(dirname, 'training_txt/shakeComplete.txt') bot2.read(shakeText) shakeTweets = bot2.generate_text(25) west_phil_text = os.path.join(dirname, 'training_txt/westPhil.txt') bot4.read(west_phil_text) westp_text = bot4.generate_text(25) russellText = os.path.join(dirname, 'rtraining_txt/russelMath.txt')
with open('%s_tweets.txt' % screen_name, 'wb') as f: for tweet in alltweets: f.write(tweet.text.encode("utf-8") + ' '.encode("utf-8")) pass get_all_tweets("kanyewest") kanyebot = MarkovBot() # Get the current directory's path dirname = os.path.dirname(os.path.abspath(__file__)) # Construct the path to the book tweets = os.path.join(dirname, 'kanyewest_tweets.txt') # Make your bot read the book! kanyebot.read(tweets) kanyebot.twitter_login(consumer_key, consumer_secret, access_key, access_secret) # Set some parameters for your bot targetstring = 'KanyeToTheBot' keywords = ['kim', 'pablo', 'wavy', 'bill', 'cosby'] prefix = None suffix = '#KanyeToTheBot' maxconvdepth = None # Start periodically tweeting kanyebot.twitter_tweeting_start(days=0, hours=0, minutes=15,
# import config # contains the API keys and access tokens import twitter import os import time from markovbot import MarkovBot # Initialise the MarkovBot instance tweetbot = MarkovBot() # Get the seinfeld transcripts and read dirname = os.path.dirname(os.path.abspath(__file__)) textFile = os.path.join(dirname, 'seinfelf.txt') tweetbot.read(textFile) # Text Generations # Log in to Twitter consumer_key = os.environ.get('cons_key') consumer_key_secret = os.environ.get('cons_secret') access_token = os.environ.get('access_token') access_token_secret = os.environ.get('access_token_secret') tweetbot.twitter_login(consumer_key, consumer_key_secret, access_token, access_token_secret) # Start periodically tweeting while True: minutesToWait = 120 secondsToWait = 60 * minutesToWait tweetbot.twitter_tweeting_start(days=0, hours=0,
import os from markovbot import MarkovBot tweetbot = MarkovBot() dirname = os.path.dirname(os.path.abspath(__file__)) headline = os.path.join(dirname, 'hosking_headlines.txt') comment = os.path.join(dirname, 'hosking_comments.txt') gen = input('Generate headline? Y/N\n') while True: if gen == 'Y' or gen == 'y': tweetbot.read(headline) gen_head = tweetbot.generate_text(10) print(u'\nMike Hosking: %s' % (gen_head)) tweetbot.clear_data() tweetbot.read(comment) gen_comm = tweetbot.generate_text(30) print('COMMENT: %s' % (gen_comm)) gen = input(u'\nGenerate headline? Y/N\n') elif gen == 'N' or gen == 'n': exit() elif gen != 'Y' and gen != 'N' and gen != 'y' and gen != 'n': print(u'\nInput was not Y or N') gen = input(u'\nGenerate headline? Y/N\n')
# -*- coding: utf-8 -*- import os import time import sys from markovbot import MarkovBot reload(sys) sys.setdefaultencoding('utf-8') # Initialise a MarkovBot instance tweetbot = MarkovBot() # Make your bot read the book! tweetbot.read( 'https://github.com/gini10/akelarreciberfeminista/blob/master/bots/ZorraMutante.py' ) my_first_text = tweetbot.generate_text( 10, seedword=[u'código', u'lÃmite', u'hay']) print(u'\ntweetbot says: "%s"' % (my_first_text)) # ALL YOUR SECRET STUFF! # Consumer Key (API Key) cons_key = '[ copy this value from Consumer Settings ]' # Consumer Secret (API Secret) cons_secret = '[ copy this value from Consumer Settings ]' # Access Tokenf access_token = '[ copy this value from Your Access Token ]' # Access Token Secret access_token_secret = '[ copy this value from Your Access Token ]'
def getBot(filePath): tweetbot = MarkovBot() tweetbot.read(filePath) return tweetbot