def __getitem__(self, idx): img, anno = super(COCODataset, self).__getitem__(idx) # filter crowd annotations # TODO might be better to add an extra field anno = [obj for obj in anno if obj["iscrowd"] == 0] boxes = [obj["bbox"] for obj in anno] boxes = torch.as_tensor(boxes).reshape(-1, 4) # guard against no boxes target = BoxList(boxes, img.size, mode="xywh").convert("xyxy") classes = [obj["category_id"] for obj in anno] classes = [self.json_category_id_to_contiguous_id[c] for c in classes] classes = torch.tensor(classes) target.add_field("labels", classes) if anno and "segmentation" in anno[0] and len(anno[0]['segmentation']) > 0: masks = [obj["segmentation"] for obj in anno] masks = SegmentationMask(masks, img.size, mode='poly') target.add_field("masks", masks) if anno and "keypoints" in anno[0] and len(anno[0]['keypoints']) > 0: keypoints = [obj["keypoints"] for obj in anno] keypoints = PersonKeypoints(keypoints, img.size) target.add_field("keypoints", keypoints) target = target.clip_to_image(remove_empty=True) if self._transforms is not None: img, target = self._transforms(img, target) return img, target, {'id': idx, 'info': self.get_img_info(idx)}
def _test_feature_extractors(self, extractors, overwrite_cfgs, overwrite_in_channels): ''' Make sure roi box feature extractors run ''' self.assertGreater(len(extractors), 0) in_channels_default = 64 for name, builder in extractors.items(): print('Testing {}...'.format(name)) if name in overwrite_cfgs: cfg = load_config(overwrite_cfgs[name]) else: # Use default config if config file is not specified cfg = copy.deepcopy(g_cfg) in_channels = overwrite_in_channels.get(name, in_channels_default) fe = builder(cfg, in_channels) self.assertIsNotNone( getattr(fe, 'out_channels', None), 'Need to provide out_channels for feature extractor {}'.format( name)) N, C_in, H, W = 2, in_channels, 24, 32 input = torch.rand([N, C_in, H, W], dtype=torch.float32) bboxes = [[1, 1, 10, 10], [5, 5, 8, 8], [2, 2, 3, 4]] img_size = [384, 512] box_list = BoxList(bboxes, img_size, "xyxy") out = fe([input], [box_list] * N) self.assertEqual(out.shape[:2], torch.Size([N * len(bboxes), fe.out_channels]))
def __getitem__(self, item): img = Image.open(self.image_lists[item]).convert("RGB") # dummy target w, h = img.size target = BoxList([[0, 0, w, h]], img.size, mode="xyxy") if self.transforms is not None: img, target = self.transforms(img, target) return img, target
def forward(self, x, boxes): mask_prob = x scores = None if self.keypointer: mask_prob, scores = self.keypointer(x, boxes) assert len(boxes) == 1, "Only non-batched inference supported for now" boxes_per_image = [box.bbox.size(0) for box in boxes] mask_prob = mask_prob.split(boxes_per_image, dim=0) scores = scores.split(boxes_per_image, dim=0) results = [] for prob, box, score in zip(mask_prob, boxes, scores): if len(box) == 0: continue bbox = BoxList(box.bbox, box.size, mode="xyxy") for field in box.fields(): bbox.add_field(field, box.get_field(field)) prob = PersonKeypoints(prob, box.size) prob.add_field("logits", score) bbox.add_field("keypoints", prob) results.append(bbox) return results
def __getitem__(self, idx): # annotations annotations = self.labels[idx] # load image img = Image.open(os.path.join(self.image_dir, annotations['name'])) H, W = img.height, img.width img = ToTensor()(img) boxes = [] classes = [] for label in annotations['labels']: # TODO: further filter annotations if needed classes += [label['category']] boxes += [ label['box2d']['x1'], label['box2d']['y1'], label['box2d']['x2'], label['box2d']['y2'] ] fns = os.path.join(self.image_dir, annotations['name']) boxes = torch.as_tensor(boxes).reshape(-1, 4) target = BoxList(boxes, (W, H), mode="xyxy") classes = torch.tensor(classes) target.add_field("labels", classes) target.add_field('fn', fns) return img, target, idx
def __getitem__(self, idx): img, anno = super(COCOSemanticDataset, self).__getitem__(idx) # For semantic segmentation coco = self.coco img_id = self.ids[idx] ann_ids = coco.getAnnIds(imgIds=img_id) target = coco.loadAnns(ann_ids) path = coco.loadImgs(img_id)[0]['file_name'] seg_gt = np.array( Image.open( os.path.join(self.root, path).replace( 'train2017', 'annotations/panoptic_train2017_rerange').replace( 'val2017', 'annotations/panoptic_val2017_rerange').replace( 'overfit2017', 'annotations/panoptic_overfit2017_rerange'). replace( 'train_small2017', 'annotations/panoptic_train_small2017_rerange').replace( 'val_small2017', 'annotations/panoptic_val_small2017_rerange').replace( 'jpg', 'png'))) segments = torch.as_tensor(seg_gt) segments = torch.unsqueeze(segments, 0) # filter crowd annotations # TODO might be better to add an extra field anno = [obj for obj in anno if obj["iscrowd"] == 0] boxes = [obj["bbox"] for obj in anno] boxes = torch.as_tensor(boxes).reshape(-1, 4) # guard against no boxes target = BoxList(boxes, img.size, mode="xywh").convert("xyxy") classes = [obj["category_id"] for obj in anno] classes = [self.json_category_id_to_contiguous_id[c] for c in classes] classes = torch.tensor(classes) target.add_field("labels", classes) masks = [obj["segmentation"] for obj in anno] masks = SegmentationMask(masks, img.size, mode="mask") target.add_field("masks", masks) target = target.clip_to_image(remove_empty=True) target = SemanticSegment(segments, img.size) return img, target, idx
def forward(self, image_list, feature_maps): grid_height, grid_width = feature_maps[0].shape[-2:] grid_sizes = [feature_map.shape[-2:] for feature_map in feature_maps] anchors_over_all_feature_maps = self.grid_anchors(grid_sizes) anchors = [] for i, (image_height, image_width) in enumerate(image_list.image_sizes): anchors_in_image = [] for anchors_per_feature_map in anchors_over_all_feature_maps: boxlist = BoxList( anchors_per_feature_map, (image_width, image_height), mode="xyxy" ) self.add_visibility_to(boxlist) anchors_in_image.append(boxlist) anchors.append(anchors_in_image) return anchors
def __getitem__(self, idx): # load image img = ToTensor()(Image.open( os.path.join(self.image_dir, self.image_paths[idx]))) # padding padBottom = KITTI_MAX_HEIGHT - img.size(1) padRight = KITTI_MAX_WIDTH - img.size(2) # (padLeft, padRight, padTop, padBottom) img = F.pad(img, (0, padRight, 0, padBottom)) # load annotations label_path = os.path.join(self.label_dir, self.label_paths[idx]) target = None if os.path.exists(label_path): with open(label_path) as f: labels = f.read().splitlines() boxes = [] classes = [] for label in labels: attributes = label.split(' ') if attributes[0] in CLASS_TYPE_CONVERSION.keys(): # TODO: further filter annotations if needed label_type = CLASS_TYPE_CONVERSION[attributes[0]] classes += [TYPE_ID_CONVERSION[label_type]] boxes += [float(c) for c in attributes[4:8]] boxes = torch.as_tensor(boxes).reshape(-1, 4) target = BoxList(boxes, (KITTI_MAX_WIDTH, KITTI_MAX_HEIGHT), mode="xyxy") classes = torch.tensor(classes) target.add_field("labels", classes) return img, target, idx
def get_groundtruth(self, index): img_id = self.ids[index] anno = ET.parse(self._annopath % img_id).getroot() anno = self._preprocess_annotation(anno) height, width = anno["im_info"] target = BoxList(anno["boxes"], (width, height), mode="xyxy") target.add_field("labels", anno["labels"]) target.add_field("difficult", anno["difficult"]) return target
def forward(self, boxes, pred_maskiou, labels): num_masks = pred_maskiou.shape[0] index = torch.arange(num_masks, device=labels.device) maskious = pred_maskiou[index, labels] maskious = [maskious] results = [] for maskiou, box in zip(maskious, boxes): if len(box) == 0: continue bbox = BoxList(box.bbox, box.size, mode="xyxy") for field in box.fields(): bbox.add_field(field, box.get_field(field)) bbox_scores = bbox.get_field("scores") mask_scores = bbox_scores * maskiou bbox.add_field("mask_scores", mask_scores) results.append(bbox) return results
def select_over_all_levels(self, boxlists): num_images = len(boxlists) results = [] for i in range(num_images): scores = boxlists[i].get_field("scores") labels = boxlists[i].get_field("labels") boxes = boxlists[i].bbox boxlist = boxlists[i] result = [] # skip the background for j in range(1, self.num_classes): inds = (labels == j).nonzero().view(-1) scores_j = scores[inds] boxes_j = boxes[inds, :].view(-1, 4) boxlist_for_class = BoxList(boxes_j, boxlist.size, mode="xyxy") boxlist_for_class.add_field("scores", scores_j) boxlist_for_class = nms( boxlist_for_class, self.nms_thresh, score_field="scores" ) num_labels = len(boxlist_for_class) boxlist_for_class.add_field( "labels", torch.full((num_labels,), j, dtype=torch.int64, device=scores.device) ) result.append(boxlist_for_class) result = cat_boxlist(result) number_of_detections = len(result) # Limit to max_per_image detections **over all classes** if number_of_detections > self.fpn_post_nms_top_n > 0: cls_scores = result.get_field("scores") image_thresh, _ = torch.kthvalue( cls_scores.cpu(), number_of_detections - self.fpn_post_nms_top_n + 1 ) keep = cls_scores >= image_thresh.item() keep = torch.nonzero(keep).squeeze(1) result = result[keep] results.append(result) return results
def forward(self, x, boxes): """ Arguments: x (Tensor): the mask logits boxes (list[BoxList]): bounding boxes that are used as reference, one for ech image Returns: results (list[BoxList]): one BoxList for each image, containing the extra field mask """ mask_prob = x.sigmoid() # select masks coresponding to the predicted classes num_masks = x.shape[0] labels = [bbox.get_field("labels") for bbox in boxes] labels = torch.cat(labels) index = torch.arange(num_masks, device=labels.device) mask_prob = mask_prob[index, labels][:, None] boxes_per_image = [len(box) for box in boxes] mask_prob = mask_prob.split(boxes_per_image, dim=0) if self.masker: mask_prob = self.masker(mask_prob, boxes) results = [] for prob, box in zip(mask_prob, boxes): bbox = BoxList(box.bbox, box.size, mode="xyxy") if len(box) > 0: for field in box.fields(): bbox.add_field(field, box.get_field(field)) bbox.add_field("mask", prob) results.append(bbox) return results
def calc_detection_voc_prec_rec(gt_boxlists, pred_boxlists, iou_thresh=0.5): """Calculate precision and recall based on evaluation code of PASCAL VOC. This function calculates precision and recall of predicted bounding boxes obtained from a dataset which has :math:`N` images. The code is based on the evaluation code used in PASCAL VOC Challenge. """ n_pos = defaultdict(int) score = defaultdict(list) match = defaultdict(list) for gt_boxlist, pred_boxlist in zip(gt_boxlists, pred_boxlists): pred_bbox = pred_boxlist.bbox.numpy() pred_label = pred_boxlist.get_field("labels").numpy() pred_score = pred_boxlist.get_field("scores").numpy() gt_bbox = gt_boxlist.bbox.numpy() gt_label = gt_boxlist.get_field("labels").numpy() gt_difficult = gt_boxlist.get_field("difficult").numpy() for l in np.unique(np.concatenate((pred_label, gt_label)).astype(int)): pred_mask_l = pred_label == l pred_bbox_l = pred_bbox[pred_mask_l] pred_score_l = pred_score[pred_mask_l] # sort by score order = pred_score_l.argsort()[::-1] pred_bbox_l = pred_bbox_l[order] pred_score_l = pred_score_l[order] gt_mask_l = gt_label == l gt_bbox_l = gt_bbox[gt_mask_l] gt_difficult_l = gt_difficult[gt_mask_l] n_pos[l] += np.logical_not(gt_difficult_l).sum() score[l].extend(pred_score_l) if len(pred_bbox_l) == 0: continue if len(gt_bbox_l) == 0: match[l].extend((0,) * pred_bbox_l.shape[0]) continue # VOC evaluation follows integer typed bounding boxes. pred_bbox_l = pred_bbox_l.copy() pred_bbox_l[:, 2:] += 1 gt_bbox_l = gt_bbox_l.copy() gt_bbox_l[:, 2:] += 1 iou = boxlist_iou( BoxList(pred_bbox_l, gt_boxlist.size), BoxList(gt_bbox_l, gt_boxlist.size), ).numpy() gt_index = iou.argmax(axis=1) # set -1 if there is no matching ground truth gt_index[iou.max(axis=1) < iou_thresh] = -1 del iou selec = np.zeros(gt_bbox_l.shape[0], dtype=bool) for gt_idx in gt_index: if gt_idx >= 0: if gt_difficult_l[gt_idx]: match[l].append(-1) else: if not selec[gt_idx]: match[l].append(1) else: match[l].append(0) selec[gt_idx] = True else: match[l].append(0) n_fg_class = max(n_pos.keys()) + 1 prec = [None] * n_fg_class rec = [None] * n_fg_class for l in n_pos.keys(): score_l = np.array(score[l]) match_l = np.array(match[l], dtype=np.int8) order = score_l.argsort()[::-1] match_l = match_l[order] tp = np.cumsum(match_l == 1) fp = np.cumsum(match_l == 0) # If an element of fp + tp is 0, # the corresponding element of prec[l] is nan. prec[l] = tp / (fp + tp) # If n_pos[l] is 0, rec[l] is None. if n_pos[l] > 0: rec[l] = tp / n_pos[l] return prec, rec
def __getitem__(self, index): img, anno = super(COCODataset, self).__getitem__(index) coco = self.coco img_id = self.ids[index] ann_ids = coco.getAnnIds(imgIds=img_id) anno = coco.loadAnns(ann_ids) # filter crowd annotations # TODO might be better to add an extra field anno = [obj for obj in anno if obj["iscrowd"] == 0] boxes = [obj["bbox"] for obj in anno] boxes = torch.as_tensor(boxes).reshape(-1, 4) # guard against no boxes roi_target = BoxList(boxes, img.size, mode="xywh").convert("xyxy") first_cat = [] second_cat = [] third_cat = [] for obj in anno: if "category_id" in obj.keys(): if obj["category_id"] is not None: label1 = self.json_category_id_to_contiguous_id[ obj["category_id"]] first_cat.append(label1) if "second_category_id" in obj.keys(): if obj["second_category_id"] is not None: label2 = self.json_second_category_id_to_contiguous_id[ obj["second_category_id"]] second_cat.append(label2) if "third_category_id" in obj.keys(): if obj["third_category_id"] is not None: label3 = self.json_third_category_id_to_contiguous_id[ obj["third_category_id"]] third_cat.append(label3) if len(first_cat) > 0: first_cat = [c for c in first_cat] first_cat = torch.tensor(first_cat) roi_target.add_field("labels", first_cat) if len(second_cat) > 0: second_cat = [c for c in second_cat] second_cat = torch.tensor(second_cat) roi_target.add_field("second_labels", second_cat) if len(third_cat) > 0: third_cat = [c for c in third_cat] third_cat = torch.tensor(third_cat) roi_target.add_field("third_labels", third_cat) if anno and "segmentation" in anno[0]: try: masks = [obj["segmentation"] for obj in anno] masks = SegmentationMask(masks, img.size, mode='poly') roi_target.add_field("masks", masks) except: masks = None if anno and "keypoints" in anno[0]: try: keypoints = [obj["keypoints"] for obj in anno] keypoints = PersonKeypoints(keypoints, img.size) roi_target.add_field("keypoints", keypoints) except: keypoints = None roi_target = roi_target.clip_to_image(remove_empty=True) reg_target = self.coco.imgToRegAnns[img_id] seg_target = self.coco.imgToSegAnns[img_id] if len(reg_target) > 0: if reg_target[0][ 'label'] in self.json_second_category_id_to_contiguous_id.keys( ): reg_target = torch.tensor( self.json_second_category_id_to_contiguous_id[reg_target[0] ['label']]) else: reg_target = torch.tensor(0) else: reg_target = None if len(seg_target) > 0: seg_target = F.to_tensor(seg_target[0]['label']) else: seg_target = None if self._transforms is not None: if seg_target: img, roi_target, seg_target = self._transforms( img, roi_target, seg_target) else: img, roi_target = self._transforms(img, roi_target) info = self.get_img_info(index) # return img, roi_target, dict(id=index, info=info) return img, dict(roi_target=roi_target, reg_target=reg_target, seg_target=seg_target), dict(id=index, info=info)
def forward_for_single_feature_map( self, locations, box_cls, box_regression, centerness, image_sizes): """ Arguments: anchors: list[BoxList] box_cls: tensor of size N, A * C, H, W box_regression: tensor of size N, A * 4, H, W """ N, C, H, W = box_cls.shape # put in the same format as locations box_cls = box_cls.view(N, C, H, W).permute(0, 2, 3, 1) box_cls = box_cls.reshape(N, -1, C).sigmoid() box_regression = box_regression.view(N, 4, H, W).permute(0, 2, 3, 1) box_regression = box_regression.reshape(N, -1, 4) centerness = centerness.view(N, 1, H, W).permute(0, 2, 3, 1) centerness = centerness.reshape(N, -1).sigmoid() candidate_inds = box_cls > self.pre_nms_thresh pre_nms_top_n = candidate_inds.view(N, -1).sum(1) pre_nms_top_n = pre_nms_top_n.clamp(max=self.pre_nms_top_n) # multiply the classification scores with centerness scores box_cls = box_cls * centerness[:, :, None] results = [] for i in range(N): per_box_cls = box_cls[i] per_candidate_inds = candidate_inds[i] per_box_cls = per_box_cls[per_candidate_inds] per_candidate_nonzeros = per_candidate_inds.nonzero() per_box_loc = per_candidate_nonzeros[:, 0] per_class = per_candidate_nonzeros[:, 1] + 1 per_box_regression = box_regression[i] per_box_regression = per_box_regression[per_box_loc] per_locations = locations[per_box_loc] per_pre_nms_top_n = pre_nms_top_n[i] if per_candidate_inds.sum().item() > per_pre_nms_top_n.item(): per_box_cls, top_k_indices = \ per_box_cls.topk(per_pre_nms_top_n, sorted=False) per_class = per_class[top_k_indices] per_box_regression = per_box_regression[top_k_indices] per_locations = per_locations[top_k_indices] detections = torch.stack([ per_locations[:, 0] - per_box_regression[:, 0], per_locations[:, 1] - per_box_regression[:, 1], per_locations[:, 0] + per_box_regression[:, 2], per_locations[:, 1] + per_box_regression[:, 3], ], dim=1) h, w = image_sizes[i] boxlist = BoxList(detections, (int(w), int(h)), mode="xyxy") boxlist.add_field("labels", per_class) boxlist.add_field("scores", torch.sqrt(per_box_cls)) boxlist = boxlist.clip_to_image(remove_empty=False) boxlist = remove_small_boxes(boxlist, self.min_size) results.append(boxlist) return results
def evaluate_box_proposals( predictions, dataset, thresholds=None, area="all", limit=None ): """Evaluate detection proposal recall metrics. This function is a much faster alternative to the official COCO API recall evaluation code. However, it produces slightly different results. """ # Record max overlap value for each gt box # Return vector of overlap values areas = { "all": 0, "small": 1, "medium": 2, "large": 3, "96-128": 4, "128-256": 5, "256-512": 6, "512-inf": 7, } area_ranges = [ [0 ** 2, 1e5 ** 2], # all [0 ** 2, 32 ** 2], # small [32 ** 2, 96 ** 2], # medium [96 ** 2, 1e5 ** 2], # large [96 ** 2, 128 ** 2], # 96-128 [128 ** 2, 256 ** 2], # 128-256 [256 ** 2, 512 ** 2], # 256-512 [512 ** 2, 1e5 ** 2], ] # 512-inf assert area in areas, "Unknown area range: {}".format(area) area_range = area_ranges[areas[area]] gt_overlaps = [] num_pos = 0 for image_id, prediction in enumerate(predictions): original_id = dataset.id_to_img_map[image_id] # TODO replace with get_img_info? img_info = dataset.get_img_info(image_id) image_width = img_info["width"] image_height = img_info["height"] prediction = prediction.resize((image_width, image_height)) # sort predictions in descending order # TODO maybe remove this and make it explicit in the documentation inds = prediction.get_field("scores").sort(descending=True)[1] prediction = prediction[inds] ann_ids = dataset.coco.getAnnIds(imgIds=original_id) anno = dataset.coco.loadAnns(ann_ids) gt_boxes = [obj["bbox"] for obj in anno if obj["iscrowd"] == 0] gt_boxes = torch.as_tensor(gt_boxes).reshape(-1, 4) # guard against no boxes gt_boxes = BoxList(gt_boxes, (image_width, image_height), mode="xywh").convert( "xyxy" ) gt_areas = torch.as_tensor([obj["area"] for obj in anno if obj["iscrowd"] == 0]) if len(gt_boxes) == 0: continue valid_gt_inds = (gt_areas >= area_range[0]) & (gt_areas <= area_range[1]) gt_boxes = gt_boxes[valid_gt_inds] num_pos += len(gt_boxes) if len(gt_boxes) == 0: continue if len(prediction) == 0: continue if limit is not None and len(prediction) > limit: prediction = prediction[:limit] overlaps = boxlist_iou(prediction, gt_boxes) _gt_overlaps = torch.zeros(len(gt_boxes)) for j in range(min(len(prediction), len(gt_boxes))): # find which proposal box maximally covers each gt box # and get the iou amount of coverage for each gt box max_overlaps, argmax_overlaps = overlaps.max(dim=0) # find which gt box is 'best' covered (i.e. 'best' = most iou) gt_ovr, gt_ind = max_overlaps.max(dim=0) assert gt_ovr >= 0 # find the proposal box that covers the best covered gt box box_ind = argmax_overlaps[gt_ind] # record the iou coverage of this gt box _gt_overlaps[j] = overlaps[box_ind, gt_ind] assert _gt_overlaps[j] == gt_ovr # mark the proposal box and the gt box as used overlaps[box_ind, :] = -1 overlaps[:, gt_ind] = -1 # append recorded iou coverage level gt_overlaps.append(_gt_overlaps) gt_overlaps = torch.cat(gt_overlaps, dim=0) gt_overlaps, _ = torch.sort(gt_overlaps) if thresholds is None: step = 0.05 thresholds = torch.arange(0.5, 0.95 + 1e-5, step, dtype=torch.float32) recalls = torch.zeros_like(thresholds) # compute recall for each iou threshold for i, t in enumerate(thresholds): recalls[i] = (gt_overlaps >= t).float().sum() / float(num_pos) # ar = 2 * np.trapz(recalls, thresholds) ar = recalls.mean() return { "ar": ar, "recalls": recalls, "thresholds": thresholds, "gt_overlaps": gt_overlaps, "num_pos": num_pos, }
def im_detect_bbox_aug(model, images, device): # Collect detections computed under different transformations boxlists_ts = [] for _ in range(len(images)): boxlists_ts.append([]) def add_preds_t(boxlists_t): for i, boxlist_t in enumerate(boxlists_t): if len(boxlists_ts[i]) == 0: # The first one is identity transform, no need to resize the boxlist boxlists_ts[i].append(boxlist_t) else: # Resize the boxlist as the first one boxlists_ts[i].append(boxlist_t.resize(boxlists_ts[i][0].size)) # Compute detections for the original image (identity transform) boxlists_i = im_detect_bbox(model, images, cfg.INPUT.MIN_SIZE_TEST, cfg.INPUT.MAX_SIZE_TEST, device) add_preds_t(boxlists_i) # Perform detection on the horizontally flipped image if cfg.TEST.BBOX_AUG.H_FLIP: boxlists_hf = im_detect_bbox_hflip(model, images, cfg.INPUT.MIN_SIZE_TEST, cfg.INPUT.MAX_SIZE_TEST, device) add_preds_t(boxlists_hf) # Compute detections at different scales for scale in cfg.TEST.BBOX_AUG.SCALES: max_size = cfg.TEST.BBOX_AUG.MAX_SIZE boxlists_scl = im_detect_bbox_scale(model, images, scale, max_size, device) add_preds_t(boxlists_scl) if cfg.TEST.BBOX_AUG.SCALE_H_FLIP: boxlists_scl_hf = im_detect_bbox_scale(model, images, scale, max_size, device, hflip=True) add_preds_t(boxlists_scl_hf) # Merge boxlists detected by different bbox aug params boxlists = [] for i, boxlist_ts in enumerate(boxlists_ts): bbox = torch.cat([boxlist_t.bbox for boxlist_t in boxlist_ts]) scores = torch.cat( [boxlist_t.get_field('scores') for boxlist_t in boxlist_ts]) boxlist = BoxList(bbox, boxlist_ts[0].size, boxlist_ts[0].mode) boxlist.add_field('scores', scores) boxlists.append(boxlist) # Apply NMS and limit the final detections results = [] post_processor = make_roi_box_post_processor(cfg) for boxlist in boxlists: results.append( post_processor.filter_results(boxlist, cfg.MODEL.ROI_BOX_HEAD.NUM_CLASSES)) return results
def forward_for_single_feature_map(self, anchors, objectness, box_regression): """ Arguments: anchors: list[BoxList] objectness: tensor of size N, A, H, W box_regression: tensor of size N, A * 4, H, W """ device = objectness.device N, A, H, W = objectness.shape # put in the same format as anchors objectness = permute_and_flatten(objectness, N, A, 1, H, W).view(N, -1) objectness = objectness.sigmoid() box_regression = permute_and_flatten(box_regression, N, A, 4, H, W) num_anchors = A * H * W pre_nms_top_n = min(self.pre_nms_top_n, num_anchors) objectness, topk_idx = objectness.topk(pre_nms_top_n, dim=1, sorted=True) batch_idx = torch.arange(N, device=device)[:, None] box_regression = box_regression[batch_idx, topk_idx] image_shapes = [box.size for box in anchors] concat_anchors = torch.cat([a.bbox for a in anchors], dim=0) concat_anchors = concat_anchors.reshape(N, -1, 4)[batch_idx, topk_idx] proposals = self.box_coder.decode( box_regression.view(-1, 4), concat_anchors.view(-1, 4) ) proposals = proposals.view(N, -1, 4) result = [] for proposal, score, im_shape in zip(proposals, objectness, image_shapes): boxlist = BoxList(proposal, im_shape, mode="xyxy") boxlist.add_field("objectness", score) boxlist = boxlist.clip_to_image(remove_empty=False) boxlist = remove_small_boxes(boxlist, self.min_size) if use_nms == 'soft_nms': boxlist = soft_nms( boxlist, self.nms_thresh, max_proposals=self.post_nms_top_n, score_field="objectness", ) elif use_nms == 'softer_nms': boxlist = softer_nms( boxlist, self.nms_thresh, max_proposals=self.post_nms_top_n, score_field="objectness", ) else: # nms boxlist = nms( boxlist, self.nms_thresh, max_proposals=self.post_nms_top_n, score_field="objectness", ) result.append(boxlist) return result