def train(cfg, local_rank, distributed): model = build_detection_model(cfg) device = torch.device(cfg.MODEL.DEVICE) model.to(device) optimizer = make_optimizer(cfg, model) scheduler = make_lr_scheduler(cfg, optimizer) if distributed: model = torch.nn.parallel.deprecated.DistributedDataParallel( model, device_ids=[local_rank], output_device=local_rank, # this should be removed if we update BatchNorm stats broadcast_buffers=False, ) arguments = {} arguments["iteration"] = 0 output_dir = cfg.OUTPUT_DIR save_to_disk = get_rank() == 0 checkpointer = DetectronCheckpointer(cfg, model, optimizer, scheduler, output_dir, save_to_disk) extra_checkpoint_data = checkpointer.load(cfg.MODEL.WEIGHT, resume=cfg.SOLVER.RESUME) if cfg.SOLVER.RESUME: arguments.update(extra_checkpoint_data) data_loader = make_data_loader( cfg, is_train=True, is_distributed=distributed, start_iter=arguments["iteration"], ) checkpoint_period = cfg.SOLVER.CHECKPOINT_PERIOD tb_logger = Logger(cfg.OUTPUT_DIR) do_train( model, data_loader, optimizer, scheduler, checkpointer, device, checkpoint_period, arguments, tb_logger, cfg, ) return model
def main(args): # parser = argparse.ArgumentParser(description="PyTorch Object Detection Training") # parser.add_argument( # "--config-file", # default="", # metavar="FILE", # help="path to config file", # type=str, # ) # parser.add_argument("--local-rank", type=int, default=0) # parser.add_argument( # "--skip-test", # dest="skip_test", # help="Do not test the final model", # action="store_true", # ) # parser.add_argument( # "opts", # help="Modify config options using the command-line", # default=None, # nargs=argparse.REMAINDER, # ) # parser.add_argument( # "--eval-only", action="store_true", help="perform evaluation only" # ) # parser.add_argument( # "--no-color", action="store_true", help="disable colorful logging" # ) # parser.add_argument( # "--num-gpus", type=int, default=1, help="number of gpus per machine" # ) # parser.add_argument("--num-machines", type=int, default=1) # parser.add_argument( # "--machine-rank", # type=int, # default=0, # help="the rank of this machine (unique per machine)", # ) # port = 2 ** 15 + 2 ** 14 + hash(os.getuid()) % 2 ** 14 # parser.add_argument("--dist-url", default="tcp://127.0.0.1:{}".format(port)) # parser.add_argument( # "opts", # help="Modify config options using the command-line", # default=None, # nargs=argparse.REMAINDER, # ) # # args = parser.parse_args() num_gpus = int( os.environ["WORLD_SIZE"]) if "WORLD_SIZE" in os.environ else 1 # num_gpus = args.num_gpus args.distributed = num_gpus > 1 # args.distributed = get_world_size() > 1 args.local_rank = get_rank() % args.num_gpus if args.distributed: torch.cuda.set_device(args.local_rank) torch.distributed.init_process_group(backend="nccl", init_method="env://") # distributed = get_world_size() > 1 # args.distributed = distributed # if distributed: # args.local_rank = get_rank() % args.num_gpus print(args.config_file) cfg.merge_from_file(args.config_file) cfg.merge_from_list(args.opts) cfg.freeze() output_dir = cfg.OUTPUT_DIR if output_dir: mkdir(output_dir) logger = setup_logger("maskrcnn_benchmark", output_dir, get_rank()) logger.info("Using {} GPUs".format(args.num_gpus)) logger.info(args) logger.info("Collecting env info (might take some time)") logger.info("\n" + collect_env_info()) logger.info("Loaded configuration file {}".format(args.config_file)) with open(args.config_file, "r") as cf: config_str = "\n" + cf.read() logger.info(config_str) logger.info("Running with config:\n{}".format(cfg)) tb_logger = Logger(cfg.OUTPUT_DIR, get_rank()) train(cfg, args.local_rank, args.distributed, tb_logger)