#loop = TLM.loops['u302'] loop = new_looper tracks_read_write.save_loop_only_trackage(loop, 'TRACKAGE_TEST.h5') if 0: import tracks_read_write reload(tracks_read_write) test_file = 'TRACKAGE_TEST_CORE14.h5' savefile = 'TRACKAGE_TEST.h5' savefile = 'u302_tracks_only_c0-20.h5' savefile = 'u302_zero_test_tracks_only.h5' savefile = "u302_zero_test_tracks_only.h5" #ktracks_read_write.load_loop_only_trackage( loop, ) loop3 = looper.core_looper(directory=dl.sims['u302'], savefile_only_trackage=savefile) if 1: mt1 = mass_tools.mass_tool(new_looper) mt1.run() if 1: reload(mass_tools) fig, ax = plt.subplots(1, 1) mass_tools.plot_mass_tracks(mt1, ax) ax.plot([0, 1], [0, 1]) fig.savefig('plots_to_sort/%s_mass_test_read_test.png' % "U302_c0014") plt.close(fig)
if 0: import tracks_read_write reload(tracks_read_write) savefile = 'TRACKAGE_TEST.h5' loop = looper.core_looper(directory=dl.sims['u302'], savefile_only_trackage=savefile) mt1 = mass_tools.mass_tool(loop) mt1.run(core_list=[14]) if 0: reload(mass_tools) fig, ax = plt.subplots(1, 1) mass_tools.plot_mass_tracks(mt1, ax) fig.savefig('plots_to_sort/%s_mass_test_read_test.png' % mt1.this_looper.out_prefix) plt.close(fig) if 1: import three_loopers_mountain_top as TLM reload(TLM) if 0: mt1 = mass_tools.mass_tool(TLM.loops['u301']) mt1.run() if 1: fig, ax = plt.subplots(1, 1) mass_tools.plot_mass_tracks(mt1, ax) fig.savefig('plots_to_sort/u301_mass_time.png') if 0:
density_cmap = rainbow_map(np.log10(density)[:, 0].max()) mass_ratio = 1 big_core = 0 core_list = [] for nc, core_id in enumerate(mt.cores_used): ax[0][0].plot(mt.times, mt.volume[core_id], c=[0.5] * 4) #c=density_cmap( np.log10(mt.mean_rho[core_id][0])) c = color_map.to_rgba(np.log10(density[nc, n0])) Y2 = mt.mean_rho[core_id] #/nar(mt.mean_rho[core_id])[0:2].mean() ax[0][1].plot(mt.times, Y2, c=c) #[0.5]*4) M = mt.unique_mass[ core_id] #/nar(mt.unique_mass[core_id])[:6].mean() Mbar = mt.unique_mass[core_id] / nar( mt.unique_mass[core_id])[:6].mean() this_ratio = Mbar.max() / Mbar.min() if Mbar.min() < 0.1: core_list.append(nc) ax[1][0].plot(mt.times, M) mass_tools.plot_mass_tracks(mt, ax[1][1], core_list=core_list) #ax[1].plot([mt.times[0], mt.times[-1]], [Y2[0],Y2[-1]],c=c)#[0.5]*4) #ax[1].plot(mt.times, mt.mean_rho_w[core_id],c=[0.5]*4) axbonk(ax[1][0], xlabel='t', ylabel='M', yscale='log') axbonk(ax[0][1], xlabel='t', ylabel='rho', yscale='log') axbonk(ax[0][0], xlabel='t', ylabel='V', yscale='log') fig.savefig('plots_to_sort/%s_meansies.pdf' % this_simname) plt.close(fig)
if 0: import tracks_read_write reload(tracks_read_write) savefile = 'TRACKAGE_TEST.h5' loop = looper.core_looper(directory= dl.sims['u302'],savefile_only_trackage=savefile) mt1 = mass_tools.mass_tool(loop) mt1.run(core_list = [14]) if 0: reload(mass_tools) fig,ax=plt.subplots(1,1) mass_tools.plot_mass_tracks(mt1,ax) fig.savefig('plots_to_sort/%s_mass_test_read_test.png'%mt1.this_looper.out_prefix) plt.close(fig) if 0: import three_loopers_mountain_top as TLM reload(TLM) if 0: mt_dict={} for this_simname in ['u301','u302','u303']: mt_dict[this_simname] = mass_tools.mass_tool(TLM.loops[this_simname]) mt_dict[this_simname].run() if 0: for this_simname in ['u301','u302','u303']: fig,ax = plt.subplots(1,1)
import data_locations as dl from collections import defaultdict import davetools reload(davetools) import mass_tools reload(mass_tools) import looper2 plt.close('all') sim_list = ['u501'] if 'u501' not in these_loops: these_loops = {} print('read u501') these_loops['u501'] = looper2.load_looper('u501_all_frame_all_prim.h5') if 'mtd' not in dir(): mtd = {} for this_simname in sim_list: if this_simname not in mtd: mtd[this_simname] = mass_tools.mass_tool(these_loops[this_simname]) mtd[this_simname].run() for this_simname in sim_list: fig, ax = plt.subplots(1, 1) mass_tools.plot_mass_tracks(mtd[this_simname], ax) fig.savefig('plots_to_sort/thing.pdf')