def _fill_domain_axes(self): for axis in self.axes: if axis.is_easting(): east_axis = RegularAxis(axis.label, axis.uom, self.gdal_dataset.get_extents_x()[0], self.gdal_dataset.get_extents_x()[1], self.gdal_dataset.get_origin_x(), axis) self.subsets.append( AxisSubset( CoverageAxis(east_axis, None, True), Interval(self.gdal_dataset.get_extents_x()[0], self.gdal_dataset.get_extents_x()[1]))) elif axis.is_northing(): north_axis = RegularAxis(axis.label, axis.uom, self.gdal_dataset.get_extents_y()[0], self.gdal_dataset.get_extents_y()[1], self.gdal_dataset.get_origin_y(), axis) self.subsets.append( AxisSubset( CoverageAxis(north_axis, None, True), Interval(self.gdal_dataset.get_extents_y()[0], self.gdal_dataset.get_extents_y()[1]))) else: unknown_axis = Axis(axis.label, axis.uom, 0, 0, 0, axis) self.subsets.append( AxisSubset(CoverageAxis(unknown_axis, None, False), Interval(0)))
def _axis_subset(self, crs_axis, nc_file): """ Returns an axis subset using the given crs axis in the context of the nc file :param CRSAxis crs_axis: the crs definition of the axis :param File nc_file: the netcdf file :rtype AxisSubset """ user_axis = self._user_axis(self._get_user_axis_by_crs_axis_name(crs_axis.label), NetcdfEvaluatorSlice(nc_file)) # Normally, without pixelIsPoint:true, in the ingredient needs to +/- 0.5 * resolution for each regular axis # e.g: resolution for axis E is 10000, then # "min": "${netcdf:variable:E:min} - 10000 / 2", # "max": "${netcdf:variable:E:max} + 10000 / 2", # with pixelIsPoint: true, no need to add these values as the service will do it automatically if self.pixel_is_point: PointPixelAdjuster.adjust_axis_bounds_to_continuous_space(user_axis, crs_axis) else: # No adjustment for all regular axes but still need to translate time in datetime to decimal to calculate if user_axis.type == UserAxisType.DATE: user_axis.interval.low = decimal.Decimal(str(arrow.get(user_axis.interval.low).float_timestamp)) if user_axis.interval.high: user_axis.interval.high = decimal.Decimal(str(arrow.get(user_axis.interval.high).float_timestamp)) # if low < high, adjust it if user_axis.interval.high is not None and user_axis.interval.low > user_axis.interval.high: user_axis.interval.low, user_axis.interval.high = user_axis.interval.high, user_axis.interval.low high = user_axis.interval.high if user_axis.interval.high else user_axis.interval.low origin = PointPixelAdjuster.get_origin(user_axis, crs_axis) if isinstance(user_axis, RegularUserAxis): geo_axis = RegularAxis(crs_axis.label, crs_axis.uom, user_axis.interval.low, high, origin, crs_axis) else: if user_axis.type == UserAxisType.DATE: if crs_axis.is_uom_day(): coefficients = self._translate_day_date_direct_position_to_coefficients(user_axis.interval.low, user_axis.directPositions) else: coefficients = self._translate_seconds_date_direct_position_to_coefficients(user_axis.interval.low, user_axis.directPositions) else: coefficients = self._translate_number_direct_position_to_coefficients(user_axis.interval.low, user_axis.directPositions) geo_axis = IrregularAxis(crs_axis.label, crs_axis.uom, user_axis.interval.low, high, origin, coefficients, crs_axis) grid_low = 0 grid_high = PointPixelAdjuster.get_grid_points(user_axis, crs_axis) # NOTE: Grid Coverage uses the direct intervals as in Rasdaman if self.grid_coverage is False and grid_high > grid_low: grid_high -= 1 grid_axis = GridAxis(user_axis.order, crs_axis.label, user_axis.resolution, grid_low, grid_high) if user_axis.type == UserAxisType.DATE: self._translate_decimal_to_datetime(user_axis, geo_axis) return AxisSubset(CoverageAxis(geo_axis, grid_axis, user_axis.dataBound), Interval(user_axis.interval.low, user_axis.interval.high))
def _get_slices(self, coverage_axes, intervals): """ Returns the slices :param list[CoverageAxis] coverage_axes: the coverage axes :param list[list[Interval]] intervals: all the possible intervals defining the coverage space :return: """ slices = [] for interval_list in intervals: subsets = [] for index in range(0, len(coverage_axes)): subsets.append( AxisSubset(coverage_axes[index], interval_list[index])) if len(coverage_axes) == 1: # For 1D we have to parse the gml and create a tuple data provider data_provider = TupleListDataProvider( self._get_coverage_data_as_array( self._get_coverage_url(subsets))) else: data_provider = UrlDataProvider( self._get_coverage_url(subsets)) slices.append(Slice(subsets, data_provider)) return slices
def _axis_subset(self, crs_axis, evaluator_slice, resolution=None): """ Returns an axis subset using the given crs axis in the context of the gdal file :param CRSAxis crs_axis: the crs definition of the axis :param GDALEvaluatorSlice evaluator_slice: the evaluator for GDAL file :param resolution: Known axis resolution, no need to evaluate sentence expression from ingredient file (e.g: Sentinel2 recipe) :rtype AxisSubset """ user_axis = self._user_axis( self._get_user_axis_by_crs_axis_name(crs_axis.label), evaluator_slice) if resolution is not None: user_axis.resolution = resolution high = user_axis.interval.high if user_axis.interval.high is not None else user_axis.interval.low if user_axis.type == UserAxisType.DATE: # it must translate datetime string to float by arrow for calculating later user_axis.interval.low = arrow.get( user_axis.interval.low).float_timestamp if user_axis.interval.high is not None: user_axis.interval.high = arrow.get( user_axis.interval.high).float_timestamp if isinstance(user_axis, RegularUserAxis): geo_axis = RegularAxis(crs_axis.label, crs_axis.uom, user_axis.interval.low, high, user_axis.interval.low, crs_axis) else: # Irregular axis (coefficients must be number, not datetime string) if user_axis.type == UserAxisType.DATE: if crs_axis.is_time_day_axis(): coefficients = self._translate_day_date_direct_position_to_coefficients( user_axis.interval.low, user_axis.directPositions) else: coefficients = self._translate_seconds_date_direct_position_to_coefficients( user_axis.interval.low, user_axis.directPositions) else: coefficients = self._translate_number_direct_position_to_coefficients( user_axis.interval.low, user_axis.directPositions) self._update_for_slice_group_size(self.coverage_id, user_axis, crs_axis, coefficients) geo_axis = IrregularAxis(crs_axis.label, crs_axis.uom, user_axis.interval.low, high, user_axis.interval.low, coefficients, crs_axis) if not crs_axis.is_x_axis() and not crs_axis.is_y_axis(): # GDAL model is 2D so on any axis except x/y we expect to have only one value grid_low = 0 grid_high = None if user_axis.interval.high is not None: grid_high = 0 else: grid_low = 0 number_of_grid_points = decimal.Decimal(str(user_axis.interval.high)) \ - decimal.Decimal(str(user_axis.interval.low)) # number_of_grid_points = (geo_max - geo_min) / resolution grid_high = grid_low + number_of_grid_points / decimal.Decimal( user_axis.resolution) grid_high = HighPixelAjuster.adjust_high(grid_high) # Negative axis, e.g: Latitude (min <--- max) if user_axis.resolution < 0: grid_high = int(abs(math.floor(grid_high))) else: # Positive axis, e.g: Longitude (min --> max) grid_high = int(abs(math.ceil(grid_high))) # NOTE: Grid Coverage uses the direct intervals as in Rasdaman if self.grid_coverage is False and grid_high is not None: if grid_high > grid_low: grid_high -= 1 grid_axis = GridAxis(user_axis.order, crs_axis.label, user_axis.resolution, grid_low, grid_high) geo_axis.origin = PointPixelAdjuster.get_origin(user_axis, crs_axis) if user_axis.type == UserAxisType.DATE: self._translate_decimal_to_datetime(user_axis, geo_axis) # NOTE: current, gdal recipe supports only has 2 axes which are "bounded" (i.e: they exist as 2D axes in file) # and 1 or more another axes gotten (i.e: from fileName) which are not "bounded" to create 3D+ coverage. data_bound = crs_axis.is_y_axis() or crs_axis.is_x_axis() return AxisSubset( CoverageAxis(geo_axis, grid_axis, data_bound), Interval(user_axis.interval.low, user_axis.interval.high))
def _axis_subset(self, grib_file, evaluated_messages, crs_axis): """ Returns an axis subset using the given crs axis in the context of the grib file :param File grib_file: the current grib file (slice) is evaluated :param List[GirbMessages] evaluated_messages: all Grib messages was evaluated :param CRSAxis crs_axis: the crs definition of the axis :rtype AxisSubset """ # first grib message from grib file, used to extract grib variables only first_grib_message = self.dataset.message(1) # As all the messages contain same axes (but different intervals), so first message is ok to get user_axis first_user_axis = self._get_user_axis_in_evaluated_message( evaluated_messages[0], crs_axis.label) # NOTE: we don't want to change this user_axis belongs to messages, so clone it user_axis = copy.deepcopy(first_user_axis) # Then, we calculate the geo, grid bounds, origin, resolution of this axis for the slice self._set_low_high(evaluated_messages, user_axis) high = user_axis.interval.high if user_axis.interval.high is not None else user_axis.interval.low origin = PointPixelAdjuster.get_origin(user_axis, crs_axis) if isinstance(user_axis, RegularUserAxis): geo_axis = RegularAxis(crs_axis.label, crs_axis.uom, user_axis.interval.low, high, origin, crs_axis) else: # after all messages was evaluated, we could get the direct_positions of the axis as in netcdf # then, it can evaluate the grib sentence normally, e.g: ${grib:axis:level} + 5 evaluating_sentence = user_axis.directPositions direct_positions = self._get_axis_values(evaluated_messages, user_axis) # convert all of values in the list to string then it can be evaluated direct_positions = list_util.to_list_string(direct_positions) evaluator_slice = GribMessageEvaluatorSlice( first_grib_message, grib_file, direct_positions) user_axis.directPositions = self.sentence_evaluator.evaluate( evaluating_sentence, evaluator_slice, user_axis.statements) # axis is datetime if user_axis.type == UserAxisType.DATE: if crs_axis.is_time_day_axis(): coefficients = self._translate_day_date_direct_position_to_coefficients( user_axis.interval.low, user_axis.directPositions) else: coefficients = self._translate_seconds_date_direct_position_to_coefficients( user_axis.interval.low, user_axis.directPositions) else: # number axis like Index1D coefficients = self._translate_number_direct_position_to_coefficients( user_axis.interval.low, user_axis.directPositions) self._update_for_slice_group_size(self.coverage_id, user_axis, crs_axis, coefficients) geo_axis = IrregularAxis(crs_axis.label, crs_axis.uom, user_axis.interval.low, high, origin, coefficients, crs_axis) grid_low = 0 grid_high = PointPixelAdjuster.get_grid_points(user_axis, crs_axis) # NOTE: Grid Coverage uses the direct intervals as in Rasdaman if self.grid_coverage is False and grid_high > grid_low: grid_high -= 1 grid_axis = GridAxis(user_axis.order, crs_axis.label, user_axis.resolution, grid_low, grid_high) if user_axis.type == UserAxisType.DATE: self._translate_decimal_to_datetime(user_axis, geo_axis) return AxisSubset( CoverageAxis(geo_axis, grid_axis, user_axis.dataBound), Interval(user_axis.interval.low, user_axis.interval.high))
def _axis_subset(self, crs_axis, gdal_file): """ Returns an axis subset using the given crs axis in the context of the gdal file :param CRSAxis crs_axis: the crs definition of the axis :param File gdal_file: the gdal file :rtype AxisSubset """ user_axis = self._user_axis( self._get_user_axis_by_crs_axis_name(crs_axis.label), GDALEvaluatorSlice(GDALGmlUtil(gdal_file.get_filepath()))) high = user_axis.interval.high if user_axis.interval.high else user_axis.interval.low if isinstance(user_axis, RegularUserAxis): geo_axis = RegularAxis(crs_axis.label, crs_axis.uom, user_axis.interval.low, high, user_axis.interval.low, crs_axis) else: # if irregular axis value is fetched from fileName so the coefficient is [0] as slicing if user_axis.directPositions == AbstractToCoverageConverter.DIRECT_POSITIONS_SLICING: user_axis.directPositions = AbstractToCoverageConverter.COEFFICIENT_SLICING geo_axis = IrregularAxis(crs_axis.label, crs_axis.uom, user_axis.interval.low, high, user_axis.interval.low, user_axis.directPositions, crs_axis) if not crs_axis.is_easting() and not crs_axis.is_northing(): # GDAL model is 2D so on any axis except x/y we expect to have only one value grid_low = 0 grid_high = 0 else: grid_low = 0 number_of_grid_points = decimal.Decimal(str(user_axis.interval.high)) \ - decimal.Decimal(str(user_axis.interval.low)) # number_of_grid_points = (geo_max - geo_min) / resolution grid_high = grid_low + number_of_grid_points / decimal.Decimal( user_axis.resolution) grid_high = HighPixelAjuster.adjust_high(grid_high) # Negative axis, e.g: Latitude (min <--- max) if user_axis.resolution < 0: grid_high = int(abs(math.floor(grid_high))) else: # Positive axis, e.g: Longitude (min --> max) grid_high = int(abs(math.ceil(grid_high))) # NOTE: Grid Coverage uses the direct intervals as in Rasdaman if self.grid_coverage is False: if grid_high > grid_low: grid_high -= 1 grid_axis = GridAxis(user_axis.order, crs_axis.label, user_axis.resolution, grid_low, grid_high) geo_axis.origin = PointPixelAdjuster.get_origin(user_axis, crs_axis) if user_axis.type == UserAxisType.DATE: self._translate_decimal_to_datetime(user_axis, geo_axis) # NOTE: current, gdal recipe supports only has 2 axes which are "bounded" (i.e: they exist as 2D axes in file) # and 1 or more another axes gotten (i.e: from fileName) which are not "bounded" to create 3D+ coverage. data_bound = crs_axis.is_northing() or crs_axis.is_easting() return AxisSubset( CoverageAxis(geo_axis, grid_axis, data_bound), Interval(user_axis.interval.low, user_axis.interval.high))