Esempio n. 1
0
    def CW_10way(self,
                 way,
                 order,
                 examples=200,
                 split=30,
                 data_len=1024,
                 shuffle=False,
                 normalize=True,
                 label=False,
                 SNR=None):
        """
        1. examples each file <= 119 * 1024
        2. if examples>=119, the value of overlap should be True
        """
        file_dir = [self.case10[order]]
        print('CW_{}way load [{}] loading ……'.format(way, order))
        n_way = len(file_dir[0])  # 10 way
        assert n_way == way
        n_file = len(file_dir)  # how many files for each way
        num_each_file = examples
        num_each_way = num_each_file * n_file
        data_size = num_each_file * data_len
        data_set = None
        for i in range(n_way):
            data_ = np.zeros([n_file, num_each_file, data_len])
            for j in range(n_file):
                data = get_data_csv(file_dir=file_dir[j][i],
                                    num=data_size,
                                    header=-1,
                                    shift_step=200)
                data = data.reshape([-1, data_len])
                data_[j] = data
            data_ = data_.reshape([-1, data_len])  # [num_each_way, 2048]
            if SNR is not None:
                for k, signal in enumerate(data_):
                    data_[k] = add_noise(signal, SNR)
            if normalize:
                data_ = normalization(data_)
            if i == 0:
                data_set = data_
            else:
                data_set = np.concatenate((data_set, data_), axis=0)
        data_set = data_set.reshape([n_way, num_each_way, data_len,
                                     1])[:, :examples]
        if shuffle:
            data_set = sample_shuffle(data_set)  # 数据少 不建议打乱 不利于训练和测试集有序分开
        train_data, test_data = data_set[:, :
                                         split], data_set[:,
                                                          split:]  # 先shuffle

        if label:
            label = np.arange(n_way)[:, np.newaxis]
            label = np.tile(label, (1, examples))  # [Nc, examples]
            train_lab, test_lab = label[:, :split], label[:, split:]
            return train_data, train_lab, test_data, test_lab  # [Nc,num_each_way,2048,1], [Nc, 50]
        else:
            return train_data, test_data  # [Nc, num_each_way, 2048, 1]
Esempio n. 2
0
    def SA_37way(self,
                 way,
                 examples=200,
                 split=30,
                 data_len=1024,
                 shuffle=False,
                 normalize=True,
                 label=False):
        file_dir = None
        if way == 3:
            file_dir = self.SA3
        elif way == 7:
            file_dir = self.SA7
        print('SA_{}way loading ……'.format(way))
        n_way = len(file_dir[0])  # 3/7 way
        assert n_way == way
        n_file = len(file_dir)  # how many files for each way, 1
        num_each_file = examples
        num_each_way = num_each_file * n_file
        data_size = num_each_file * data_len
        data_set = None
        for i in range(n_way):
            data_ = np.zeros([n_file, num_each_file, data_len])
            for j in range(n_file):
                data = get_data_csv(file_dir=file_dir[j][i],
                                    num=data_size,
                                    header=-1,
                                    shift_step=200)
                data = data.reshape([-1, data_len])
                data_[j] = data
            data_ = data_.reshape([-1, data_len])  # [num_each_way, 2048]
            if normalize:
                data_ = normalization(data_)
            if i == 0:
                data_set = data_
            else:
                data_set = np.concatenate((data_set, data_), axis=0)
        data_set = data_set.reshape([n_way, num_each_way, data_len,
                                     1])[:, :examples]
        if shuffle:
            data_set = sample_shuffle(data_set)  # 数据少 不建议打乱 不利于训练和测试集有序分开
        train_data, test_data = data_set[:, :
                                         split], data_set[:,
                                                          split:]  # 先shuffle

        if label:
            label = np.arange(n_way)[:, np.newaxis]
            label = np.tile(label, (1, examples))  # [Nc, examples]
            train_lab, test_lab = label[:, :split], label[:, split:]
            return train_data, train_lab, test_data, test_lab  # [Nc,num_each_way,1024,1], [Nc, 100]
        else:
            return train_data, test_data  # [Nc, num_each_way, 1024, 1]
Esempio n. 3
0
    def SA_spd(self,
               way,
               examples=100,
               split=30,
               data_len=1024,
               normalize=True,
               label=False,
               n_spd=3):
        file_dir = [self.SA_speed]
        print('SA_{}speed loading ……'.format(n_spd))
        n_way = len(file_dir[0][0])  # 3 way
        assert n_way == way
        n_file = len(file_dir)  # how many files for each way, 1
        # num_each_file = 5 * 45 if overlap else 45  # 2, 3, 4, 5...
        """
        1. examples each file <= 48, suggest: 45
        2. if examples>=48, the value of overlap should be True

        """
        num_each_spd = examples
        data_size = num_each_spd * data_len
        train_data = np.zeros([n_way, n_spd, n_file, split, data_len])
        test_data = np.zeros(
            [n_way, n_spd, n_file, num_each_spd - split, data_len])

        for i in range(n_way):
            for j in range(n_spd):
                for k in range(n_file):
                    data = get_data_csv(file_dir=file_dir[k][j][i],
                                        num=data_size,
                                        header=-1,
                                        shift_step=200)
                    data = data.reshape([-1, data_len])[:examples]
                    # data_[j] = data
                    if normalize:
                        data = normalization(data)
                    train_data[i, j, k] = data[:split]
                    test_data[i, j, k] = data[split:]
        train_data = train_data.reshape([n_way, n_spd, -1, data_len])
        test_data = test_data.reshape([n_way, n_spd, -1, data_len])

        if label:
            label = np.arange(n_way)[:, np.newaxis, np.newaxis]
            label = np.tile(label, (1, n_spd, num_each_spd))  # [Nc, examples]
            train_lab, test_lab = label[:, :, split], label[:, :, split:]
            return train_data, train_lab, test_data, test_lab
            # [Nc, n_spd, num_each_way, 2048, 1], [Nc, n_spd, num_each_way]
        else:
            return train_data, test_data  # [Nc, n_spd, num_each_way, 2048, 1]