Esempio n. 1
0
def build_matcher(data_struct):
    matcher = FaissMatcher()
    embs = []
    labels = []
    for label in data_struct["folder_structure"]:
        for tracker in data_struct["folder_structure"][label]:
            for image_id in data_struct["folder_structure"][label][tracker]:
                labels.append(image_id)
                embs.append(data_struct["regdict"][image_id]["embedding"])
    matcher.fit(embs, labels)  #build matcher
    return matcher
def give_this_id_10_closest_ids():
    # init matcher
    with open('../data/top10querylog.txt', 'a') as f:
        f.write('TOP10 QUERY IS BEING IN PROCESS !!!\n\n')
    global querying_top10_image_ids_queue
    global mongodb_faceinfo
    global mongodb_dashinfo
    embs = []
    labels = []
    cursors = mongodb_dashinfo.find({})
    unique_labels = [cursor['represent_image_id'] for cursor in cursors]
    cursors = mongodb_faceinfo.find({'image_id': {'$in': unique_labels}})
    for cursor in cursors:
        embs.append(np.array(cursor['embedding']))
        labels.append(cursor['image_id'])
    nof_registered_image_ids = len(labels)
    matcher = FaissMatcher()
    matcher.fit(embs, labels)

    with open('../data/top10querylog.txt', 'a') as f:
        f.write('MATCHER BUILT!!!\n\n')

    while True:
        if nof_registered_image_ids < mongodb_dashinfo.find({}).count():
            nof_registered_image_ids = mongodb_dashinfo.find({}).count()
            print('[Query TOP10] Update new registered image_id ...')
            cursors = mongodb_dashinfo.find({
                'represent_image_id': {
                    '$nin': labels
                }
            })
            unique_labels = [cursor['represent_image_id'] for cursor in cursors]
            cursors = mongodb_faceinfo.find({
                'image_id': {
                    '$in': unique_labels
                }
            })
            adding_embs = []
            adding_labels = []
            for cursor in cursors:
                adding_embs.append(np.array(cursor['embedding']))
                adding_labels.append(cursor['image_id'])
            old_embs = embs
            old_labels = labels
            embs = old_embs + adding_embs
            labels = old_labels + adding_labels

            matcher.update(adding_embs, adding_labels)

        if not len(querying_top10_image_ids_queue) == 0:
            lock.acquire()
            queue_data = querying_top10_image_ids_queue.pop()
            lock.release()
            results = {}
            session_id = queue_data['sessionId']
            image_id = queue_data['imageId']
            print('[Query TOP10] image_id: ' + image_id)
            with open('../data/top10querylog.txt', 'a') as f:
                f.write('image_id: ' + image_id + '\n')

            cursors = mongodb_faceinfo.find({'image_id': image_id})
            if cursors.count() == 0:
                print('[Query TOP10] THIS QUERY IMAGE ID HAS YET TO REGISTER')
                with open('../data/top10querylog.txt', 'a') as f:
                    f.write('THIS QUERY IMAGE ID HAS YET TO REGISTER\n')
                face_id = mongodb_dashinfo.find({
                    'represent_image_id': image_id
                })[0]['face_id']
                unique_labels = [
                    cursor['represent_image_id']
                    for cursor in mongodb_dashinfo.find({
                        'face_id': face_id
                    })
                ]
                for label in unique_labels:
                    results[label] = '0'
            else:
                query_emb = cursors[0]['embedding']
                dists, inds = matcher._classifier.search(
                    np.array(query_emb).astype('float32'), k=15)
                dists = np.squeeze(dists)
                inds = np.squeeze(inds)
                top_match_ids = [labels[idx] for idx in inds]
                for i, top_match_id in enumerate(top_match_ids):
                    if i < 11 and top_match_id != image_id:
                        results[top_match_id] = str(dists[i])
            msg_results = {
                'actionType': 'getNearest',
                'sessionId': session_id,
                'data': {
                    'images': results
                }
            }
            with open('../data/top10querylog.txt', 'a') as f:
                f.write('Result: \n{}\n\n'.format(results))
            print('[Query TOP10] Result: \n{}'.format(results))
            rabbit_mq.send_with_exchange(Config.Queues.ACTION_RESULT,
                                         session_id, json.dumps(msg_results))
            # Those cmt for querying tracker from the image ids tracker
            # query_track_id = int(image_id.split('_')[0])
            # query_embs = [cursor['embedding'] for cursor in mongodb_faceinfo.find({'track_id': query_track_id})]

            # for emb in query_embs:
            #     predict_id, _, min_dist = matcher.match(emb, return_min_dist=True)
            #     if not predict_id in predicted_dict:
            #         predicted_dict[predict_id] = []
            #     predicted_dict[predict_id].append(min_dist)
            # avg_predicted_dict = {pid: sum(predicted_dict[pid])/float(len(predicted_dict[pid]))
            #                     for pid in predicted_dict}
            # sorted_predicted_ids = sorted(avg_predicted_dict.items(), key=lambda kv: kv[1])
            # with open('../data/query_top10_log.txt') as f:
            #     f.write('Query IMAGE_ID: ' + image_id + '\n')
            #     f.write('Results: {} \n\n'.format(sorted_predicted_ids))
            # str_results = []
            # for closest_id, dist in sorted_predicted_ids:
            #     str_results.append(Config.Rabbit.INTRA_SEP.join([closest_id, str(dist)]))
            # result_msg = Config.Rabbit.INTER_SEP.join(str_results)
        else:
            time.sleep(1)
Esempio n. 3
0
def general_process(lock_id, detector, preprocessor, face_extractor,
                    blynk_locker):
    '''
    INPUT: lock_id
    '''
    # Get locker infomation
    # lock_id = 'query from mongo'
    locker_info = mongodb_lockersinfo.find({'lock_id': lock_id})[0]
    this_locker = mongodb_lockers.find({'lock_id': lock_id})[0]
    cam_url = locker_info['cam_url']
    status = this_locker['status']

    blynk_locker.processing(status)

    # init face info
    mongodb_faceinfo = mongodb_db[str(lock_id)]

    # Variables for tracking faces
    frame_counter = 0
    start_time = time.time()
    acceptable_spoofing = 0

    # Variables holding the correlation trackers and the name per faceid
    tracking_folder = os.path.join(Config.TRACKING_DIR, str(lock_id))
    create_if_not_exist(tracking_folder)
    tracking_dirs = glob.glob(tracking_folder + '/*')
    if tracking_dirs == []:
        number_of_existing_trackers = 0
    else:
        lof_int_trackid = [
            int(tracking_dir.split('/')[-1]) for tracking_dir in tracking_dirs
        ]
        number_of_existing_trackers = max(lof_int_trackid) + 1
    tracker_manager = TrackerManager(
        'LOCKID' + str(lock_id), current_id=number_of_existing_trackers)
    frame_reader = URLFrameReader(cam_url, scale_factor=1)
    matcher = FaissMatcher()

    if status == 'locked':
        embs = []
        labels = []
        cursors = mongodb_faceinfo.find({
            'face_id': this_locker['lock_face_id']
        })
        for cursor in cursors:
            embs.append(np.array(cursor['embedding']))
            labels.append(cursor['image_id'])
        nof_registered_image_ids = len(labels)
        matcher.fit(embs, labels)

    while True:
        # in case the jerk hits the button
        if time.time() - start_time > 4:
            with open('../data/locker_{}_log.txt'.format(lock_id), 'a') as f:
                f.write('[LOCKER {}] OUT OF TIME! \n\n'.format(lock_id))
            frame_reader.release()
            blynk_locker.stop_processing(status)
            return -1

        frame = frame_reader.next_frame()
        if frame is None:
            print('Invalid Video Source')
            break

        fps_counter = time.time()
        # cv2.imshow('Locker {}'.format(lock_id), frame)
        # cv2.waitKey(1)

        tracker_manager.update_trackers(frame)
        if frame_counter % Config.Frame.FRAME_INTERVAL == 0:
            origin_bbs, points = detector.detect_face(frame)

            for i, in_origin_bb in enumerate(origin_bbs):
                origin_bb = in_origin_bb[:-1]

                display_face, str_padded_bbox = CropperUtils.crop_display_face(
                    frame, origin_bb)
                cropped_face = CropperUtils.crop_face(frame, origin_bb)

                # is_spoofing = spoofing_detector.is_face_spoofing(cropped_face)
                # if is_spoofing:
                #     acceptable_spoofing += 1
                # with open('../data/spoofing_log.txt', 'a') as f:
                #     f.write('Spoofing Detected at Locker {}: {}\n'.format(lock_id, is_spoofing))
                # if acceptable_spoofing > 5:
                #     with open('../data/locker_{}_log.txt'.format(lock_id), 'a') as f:
                #         f.write(
                #             '[LOCKER {}] STOP PROCESSING. '
                #             'SPOOFING DETECTED!\n'.format(lock_id)
                #         )
                #     frame_reader.release()
                #     blynk_locker.stop_processing(status)
                #     return -1

                # Calculate embedding
                preprocessed_image = preprocessor.process(cropped_face)
                # preprocessed_image = align_preprocessor.process(frame, points[:,i], aligner, 160)
                emb_array, _ = face_extractor.extract_features(
                    preprocessed_image)

                face_info = FaceInfo(origin_bb.tolist(), emb_array,
                                     frame_counter, display_face,
                                     str_padded_bbox, points[:, i].tolist())

                is_good_face = handle_filters(points[:, i], coeff_extractor,
                                              face_info, preprocessed_image)

                face_info.is_good = is_good_face
                # TODO: refractor matching_detected_face_with_trackers
                matched_track_id = tracker_manager.track(face_info)

                if not face_info.is_good:
                    print('BAD FACE')
                    continue

                # Update tracker_manager
                tracker_manager.update(matched_track_id, frame, face_info)
                checking_tracker = None
                checking_tracker, top_predicted_face_ids, matching_result_dict = \
                    tracker_manager.check_and_recognize_tracker(
                        matcher,
                        matched_track_id,
                        mongodb_faceinfo,
                        None)
                # handle_results(checking_tracker, matching_result_dict)
                if checking_tracker is not None:
                    dumped_images = checking_tracker.dump_images(
                        mongodb_faceinfo,
                        add_new=True,
                        trackingfolder=tracking_folder)
                    checking_tracker.represent_image_id = dumped_images[0]
                    face_url = os.path.join(Config.SEND_RBMQ_HTTP, str(lock_id),
                                            str(checking_tracker.track_id),
                                            checking_tracker.represent_image_id)
                    face_url += '.jpg'
                    if status == 'available':
                        # Save locker, sign up the face
                        mongodb_lockers.remove({'lock_id': lock_id})
                        msg_dict = {
                            'lock_id': lock_id,
                            'status': 'locked',
                            'lock_face_url': face_url,
                            'lock_face_id': checking_tracker.face_id,
                            'lock_timestamp': time.time(),
                            'unlock_face_url': None,
                            'unlock_face_id': None,
                            'unlock_timestap': None
                        }
                        mongodb_lockers.insert_one(msg_dict)

                        # update logs
                        msg_dict.update({'log_timestamp': time.time()})
                        mongodb_logs.insert_one(msg_dict)
                        with open('../data/locker_{}_log.txt'.format(lock_id),
                                  'a') as f:
                            f.write(
                                '[LOCKER {}] REGISTERED FACE AS {}. LOCKED\n'.
                                format(lock_id, checking_tracker.face_id))
                        blynk_locker.stop_processing('locked')

                    elif status == 'locked':
                        # Release the locker, face verification
                        # update locker
                        msg_dict = mongodb_lockers.find(
                            {
                                'lock_id': lock_id
                            }, projection={"_id": False})[0]
                        msg_dict.update({
                            'unlock_face': face_url,
                            'unlock_timestamp': time.time()
                        })

                        if this_locker[
                                'lock_face_id'] == checking_tracker.face_id:
                            print('UNLOCK!')
                            blynk_locker.stop_processing('available')
                            mongodb_lockers.remove({'lock_id': lock_id})
                            mongodb_lockers.insert_one({
                                'lock_id': lock_id,
                                'status': 'available',
                                'lock_face_id': None,
                                'lock_face_url': None,
                                'lock_timestamp': None,
                                'unlock_face_id': None,
                                'unlock_face_url': None,
                                'unlock_timestap': None
                            })
                            with open(
                                    '../data/locker_{}_log.txt'.format(lock_id),
                                    'a') as f:
                                f.write(
                                    '[LOCKER {}] MATCHED WITH FACE ID {}. '
                                    'UNLOCKED. THIS LOCKER IS AVAILABLE NOW!\n'.
                                    format(lock_id, checking_tracker.face_id))

                        else:
                            print('NOT MATCH')
                            blynk_locker.stop_processing('locked')
                            with open(
                                    '../data/locker_{}_log.txt'.format(lock_id),
                                    'a') as f:
                                f.write('[LOCKER {}] NOT MATCH. '
                                        'PLEASE TRY AGAIN!\n'.format(lock_id))

                        # update logs
                        msg_dict.update({'log_timestamp': time.time()})
                        mongodb_logs.insert_one(msg_dict)
                    frame_reader.release()
                    return 1
            tracker_manager.find_and_process_end_track(mongodb_faceinfo)
            frame_counter += 1
            print("FPS: %f" % (1 / (time.time() - fps_counter)))
Esempio n. 4
0
class FindSimilarFaceThread(Thread):
    '''
    Find similar faces from dashboard
    '''
    def __init__(self, **args):
        self.nrof_closest_faces = args.get('nrof_closest_faces', 10)
        self.database = args.get('database')
        self.rabbit_mq = args.get('rabbit_mq')
        self.event = threading.Event()
        self.setup_matcher()
        super(FindSimilarFaceThread, self).__init__()

    def join(self, timeout=None):
        print('Find similar joint')
        self.event.set()
        super(FindSimilarFaceThread, self).join()

    def setup_matcher(self):
        with open('../data/top10querylog.txt', 'a') as f:
            f.write('TOP10 QUERY IS BEING IN PROCESS !!!\n\n')
        '''
        self.embs = []
        self.labels = []
        cursors = self.mongo.mongodb_dashinfo.find({})
        unique_labels = [cursor['represent_image_id'] for cursor in cursors]
        cursors = self.mongo.mongodb_faceinfo.find({'image_id': {'$in': unique_labels}})
        for cursor in cursors:
            self.embs.append(np.array(cursor['embedding']))
            self.labels.append(cursor['image_id'])
        self.nof_registered_image_ids = len(self.labels)
        '''
        self.labels, self.embs = self.database.get_labels_and_embs_dashboard()
        self.matcher = FaissMatcher()
        self.matcher.fit(self.embs, self.labels)

        with open('../data/top10querylog.txt', 'a') as f:
            f.write('MATCHER BUILT!!!\n\n')

    def run(self):
        while not self.event.is_set():
            # first update check for new faces in dashboard
            '''
            if self.nof_registered_image_ids < self.mongo.mongodb_dashinfo.find({}).count():
                
                self.nof_registered_image_ids = self.mongo.mongodb_dashinfo.find({}).count()
                print('[Query TOP10] Update new registered image_id ...')
                cursors = self.mongo.mongodb_dashinfo.find({'represent_image_id': {'$nin': self.labels}})
                unique_labels = [cursor['represent_image_id'] for cursor in cursors]
                cursors = self.mongo.mongodb_faceinfo.find({'image_id': {'$in': unique_labels}})
                adding_embs = []
                adding_labels = []
                for cursor in cursors:
                    adding_embs.append(np.array(cursor['embedding']))
                    adding_labels.append(cursor['image_id'])
            '''
            adding_labels, adding_embs = self.database.get_labels_and_embs_dashboard(
                self.labels)
            if len(adding_labels) > 0:
                old_embs = self.embs
                old_labels = self.labels
                self.embs = old_embs + adding_embs
                self.labels = old_labels + adding_labels
                print('Find similar', len(adding_labels))
                self.matcher.update(adding_embs, adding_labels)

            # get new query from from queue, why not just trigger
            action_msg = self.rabbit_mq.receive_str(Config.Queues.ACTION)
            if action_msg is not None:
                return_dict = json.loads(action_msg)
                print('Receive: {}'.format(return_dict))
                if return_dict['actionType'] == 'getNearest':
                    data = return_dict['data']

                    results = {}
                    session_id = data['sessionId']
                    image_id = data['imageId']
                    print('[Query TOP10] image_id: ' + image_id)
                    with open('../data/top10querylog.txt', 'a') as f:
                        f.write('image_id: ' + image_id + '\n')

                    cursors = self.database.mongodb_faceinfo.find(
                        {'image_id': image_id})
                    if cursors.count() == 0:
                        print(
                            '[Query TOP10] THIS QUERY IMAGE ID HAS YET TO REGISTER'
                        )
                        with open('../data/top10querylog.txt', 'a') as f:
                            f.write(
                                'THIS QUERY IMAGE ID HAS YET TO REGISTER\n')
                        face_id = self.database.mongodb_dashinfo.find(
                            {'represent_image_id': image_id})[0]['face_id']
                        unique_labels = [
                            cursor['represent_image_id']
                            for cursor in self.database.mongodb_dashinfo.find(
                                {'face_id': face_id})
                        ]
                        for label in unique_labels:
                            results[label] = '0'
                    else:
                        query_emb = cursors[0]['embedding']
                        embs = np.array(query_emb).astype('float32').reshape(
                            (-1, 128))
                        dists, inds = self.matcher._classifier.search(embs,
                                                                      k=15)
                        dists = np.squeeze(dists)
                        inds = np.squeeze(inds)
                        top_match_ids = [self.labels[idx] for idx in inds]
                        for i, top_match_id in enumerate(top_match_ids):
                            if i < 11 and top_match_id != image_id:
                                results[top_match_id] = str(dists[i])
                    msg_results = {
                        'actionType': 'getNearest',
                        'sessionId': session_id,
                        'data': {
                            'images': results
                        }
                    }
                    with open('../data/top10querylog.txt', 'a') as f:
                        f.write('Result: \n{}\n\n'.format(results))
                    print('[Query TOP10] Result: \n{}'.format(results))
                    self.rabbit_mq.send_with_exchange(
                        Config.Queues.ACTION_RESULT, session_id,
                        json.dumps(msg_results))
            else:
                time.sleep(1)