from math import sqrt as rt class Matrix(Element): def isApproxEq(self, b, approximation): for r in range(len(self.value)): for c in range(len(self.value[r])): if abs(b.value[r][c] - self.value[r][c]) > approximation: return False return True def operation(a, b): return Matrix("NONAME", np.matmul(a.value, b.value)) elements = [ Matrix("P", np.array([[1, 0], [0, 1]])), Matrix("Q", 0.5 * np.array([[-1, -rt(3)], [rt(3), -1]])), Matrix("R", 0.5 * np.array([[-1, rt(3)], [-rt(3), -1]])), Matrix("S", np.array([[1, 0], [0, -1]])), Matrix("T", 0.5 * np.array([[-1, rt(3)], [rt(3), 1]])), Matrix("U", 0.5 * np.array([[-1, -rt(3)], [-rt(3), 1]])) ] table = formCayleyTable(elements, operation, 0.0001) mygroup4 = Group.fromCayleyTable(elements, table) print("\n\nGroup 4") print(mygroup4)
def root(a, b, c): r1 = (-b + rt((b**2) - (4 * a * c))) / 2 * a r2 = (-b - rt((b**2) - (4 * a * c))) / 2 * a return "{r1} and {r2}".format(r1=r1, r2=r2)
def ozanam(nu): a = 4 * nu + 8 b = (nu + 1) * a + 4 * nu + 7 c = int(rt(a**2 + b**2)) return [a, b, c]
def stifel(nu): a = (2 * nu + 3) b = (nu + 1) * a + (nu + 1) c = int(rt(a**2 + b**2)) return [a, b, c]
}, 'joey': { 'home': '9991616' }, 'ross': { 'work': '2221717' }, } #import a library import math print(math.sqrt(5)) from math import sqrt, acos print(sqrt(5)) from math import sqrt as rt print(rt(5)) print(5**0.5) from pprint import pprint as pp pp(contacts) pp(contacts['phoebe']) print(contacts['phoebe']['email']) phoebe = contacts['phoebe'] phoebes_email = phoebe['email'] print(phoebes_email) print(contacts['phoebe']['pets'][2]) def show_contacts():