def get_heading_bci(x_bcf, t, theta_1, theta_2, theta_3, ellipsmat, w0, wdot):
    rbcf = x_bcf[0:3]
    vbcf = x_bcf[3:6]
    m_u = math_utilities.math_utilities_class()

    xi1, d_long_dx = get_longitude(x_bcf, t, theta_1, theta_2, theta_3,
                                   ellipsmat, w0, wdot)  # aux. angle xi1 (rad)

    # transformation matrix from BCF frame to F1 frame
    R_bcf2f1 = m_u.transform3(xi1)

    n_pa = get_n_pa(x_bcf, t, theta_1, theta_2, theta_3, ellipsmat, w0, wdot)
    R_bcf2pa = get_R_bcf2pa(theta_1, theta_2, theta_3)
    R_pa2bcf = np.transpose(R_bcf2pa)

    n_f1 = np.dot(R_bcf2f1,
                  np.dot(R_pa2bcf,
                         n_pa))  # normal vector expressed in F1 frame

    xi2 = np.asscalar(m_u.atan2(n_f1[0], n_f1[2]))  # aux. angle xi2 (rad)

    # transformation matrix from F1 frame to F2 frame
    R_f12f2 = m_u.transform2(xi2)

    vbci_in_f2 = np.dot(R_f12f2, np.dot(
        R_bcf2f1,
        vbci_in_bcf))  # velocity w.r.t. BCI frame EXPRESSED in F2 frame (km/s)

    # heading angle using velocity with respect to the BCI frame (rad)
    heading_bci = np.asscalar(m_u.atan2(vbci_in_f2[1], vbci_in_f2[0]))
    return heading_bci
Esempio n. 2
0
 def __init__(self,
              a=1.0,
              b=1.0,
              c=1.0,
              t=0.0,
              r_pa=[1.0, 0.0, 0.0],
              vbcf=[0.0, 0.0, 0.0],
              theta1=0.0,
              theta2=0.0,
              theta3=0.0,
              w0=0.0,
              w0dot=0.0):
     """Constructor"""
     # Note that we take in r_pa rather than r_bcf so that we can be sure that the position is actually on the ellipse
     self.m_u = math_utilities.math_utilities_class()
     self.a = a
     self.b = b
     self.c = c
     self.ex = (a**2 - c**2) / a**2
     self.ee = (a**2 - b**2) / a**2
     self.calc_ellipsmat()
     # BCF frame unit vectors, expressed in BCF frame
     self.i_bcf = self.m_u.i_unit()
     self.j_bcf = self.m_u.j_unit()
     self.k_bcf = self.m_u.k_unit()
     self.set_state(t, r_pa, vbcf, theta1, theta2, theta3, w0, w0dot)
     return
def get_r_pa(x_bcf, t, theta_1, theta_2, theta_3, ellipsmat, w0, wdot):
    rbcf = x_bcf[0:3]
    vbcf = x_bcf[3:6]
    m_u = math_utilities.math_utilities_class()

    R_bcf2pa = get_R_bcf2pa(theta_1, theta_2, theta_3)
    r_pa = np.dot(R_bcf2pa, rbcf)
    return r_pa
def get_R_bcf2pa(theta_1, theta_2, theta_3):
    m_u = math_utilities.math_utilities_class()

    R_bcf2fprime = m_u.transform3(theta_1)
    R_fprime2fdprime = m_u.transform1(theta_2)
    R_fdprime2pa = m_u.transform3(theta_3)
    R_bcf2pa = np.dot(R_fdprime2pa, np.dot(R_fprime2fdprime, R_bcf2fprime))
    return R_bcf2pa
def get_vbci_in_bcf(x_bcf, t, theta_1, theta_2, theta_3, ellipsmat, w0, wdot):
    rbcf = x_bcf[0:3]
    vbcf = x_bcf[3:6]
    m_u = math_utilities.math_utilities_class()

    omega = get_omega(x_bcf, t, theta_1, theta_2, theta_3, ellipsmat, w0, wdot)
    # velocity vector w.r.t. BCI frame (km/s). vector is still EXPRESSED in the BCF frame
    vbci_in_bcf = vbcf + np.cross(omega, rbcf, axis=0)

    # derivatives
    d_vbci_in_bcf_dx = np.zeros((3, 6), dtype=np.complex128)

    d_vbci_in_bcf_dx[0:3, 0:3] = m_u.crossmat(omega)  # d/drbcf
    d_vbci_in_bcf_dx[0:3, 3:6] = np.diag([1.0, 1.0, 1.0])  # d/dvbcf
    return vbci_in_bcf, d_vbci_in_bcf_dx
def get_longitude(x_bcf, t, theta_1, theta_2, theta_3, ellipsmat, w0, wdot):
    rbcf = x_bcf[0:3]
    vbcf = x_bcf[3:6]
    m_u = math_utilities.math_utilities_class()

    # BCF longitude (rad)
    longitude = m_u.atan2(np.asscalar(rbcf[1, 0]), np.asscalar(rbcf[0, 0]))

    # derivatives
    d_atan2 = m_u.d_atan2(rbcf[1, 0], rbcf[0, 0])
    d_long_drbcf = np.zeros((1, 3), dtype=np.complex128)
    d_long_drbcf[0, 0:3] = np.array(
        [np.asscalar(d_atan2[1]),
         np.asscalar(d_atan2[0]), 0.0])
    d_long_dvbcf = np.zeros((1, 3))
    d_long_dvbcf[0, 0:3] = np.array([0.0, 0.0, 0.0])
    d_long_dt = np.array([0.0])
    d_long_dx = np.zeros((1, 6))
    d_long_dx = np.concatenate((d_long_drbcf, d_long_dvbcf), axis=1)
    #d_long_dx = np.concatenate((d_long_dx, d_long_dt), axis=0)
    return longitude, d_long_dx
def get_latitude(x_bcf, t, theta_1, theta_2, theta_3, ellipsmat, w0, wdot):
    rbcf = x_bcf[0:3]
    vbcf = x_bcf[3:6]
    m_u = math_utilities.math_utilities_class()

    longitude, d_long_dx = get_longitude(x_bcf, t, theta_1, theta_2, theta_3,
                                         ellipsmat, w0, wdot)
    # BCF bodycentric latitude (rad)
    phi = m_u.atan2(
        rbcf[2, 0],
        (rbcf[0, 0] * np.cos(longitude) + rbcf[1, 0] * np.sin(longitude)))

    # derivatives
    d_phi_d_rbcf = np.zeros((1, 3), dtype=np.complex128)
    d_phi_d_arg = m_u.d_atan2(
        rbcf[2, 0],
        rbcf[0, 0] * np.cos(longitude) + rbcf[1, 0] * np.sin(longitude))
    d_argx_d_rbcf = np.zeros((1, 3), dtype=np.complex128)
    d_coslong_d_rbcf = np.array([
        -np.sin(longitude) * d_long_dx[0, 0],
        -np.sin(longitude) * d_long_dx[0, 1], 0.0
    ])
    d_sinlong_d_rbcf = np.array([
        np.cos(longitude) * d_long_dx[0, 0],
        np.cos(longitude) * d_long_dx[0, 1], 0.0
    ])
    d_argx_d_rbcf[0, 0] = np.asscalar(
        np.cos(longitude) + rbcf[0, 0] * d_coslong_d_rbcf[0] +
        rbcf[1, 0] * d_sinlong_d_rbcf[0])
    d_argx_d_rbcf[0, 1] = rbcf[0, 0] * d_coslong_d_rbcf[1] + np.sin(
        longitude) + rbcf[1, 0] * d_sinlong_d_rbcf[1]
    d_argx_d_rbcf[0, 2] = 0.0
    d_argy_d_rbcf = np.array([0.0, 0.0, 1.0], dtype=np.complex128)
    d_phi_d_rbcf = np.asscalar(d_phi_d_arg[1]) * d_argx_d_rbcf + np.asscalar(
        d_phi_d_arg[0]) * d_argy_d_rbcf
    d_phi_d_vbcf = np.zeros((1, 3), dtype=np.complex128)
    d_phi_dt = np.array([0.0], dtype=np.complex128)
    d_phi_dx = np.concatenate((d_phi_d_rbcf, d_phi_d_vbcf), axis=1)
    #d_phi_dx = np.concatenate((d_phi_dx, d_phi_dt), axis=1)
    return phi, d_phi_dx
def get_bcf2seu_mat_rotations(x_bcf, t, theta_1, theta_2, theta_3, ellipsmat,
                              w0, wdot):
    """calculate the transformation matrix from BCF frame to SEU frame using rotations to define orthogonal vectors"""
    rbcf = x_bcf[0:3]
    vbcf = x_bcf[3:6]
    m_u = math_utilities.math_utilities_class()

    # ellipsoid normal vector in PA frame
    n_pa = get_n_pa(x_bcf, t, theta_1, theta_2, theta_3, ellipsmat, w0, wdot)
    n_pa_mag = (
        n_pa[0]**2 + n_pa[1]**2 + n_pa[2]**2
    )**0.5  # using this instead of norm() for the benefit of CX derivatives
    n_pa_unit = n_pa / n_pa_mag  # unit vector

    # transformation matrix between BCF and PA frames
    R_bcf2pa = get_R_bcf2pa(theta_1, theta_2, theta_3)
    R_pa2bcf = np.transpose(R_bcf2pa)

    # u (up) vector in BCF frame, i.e., n_bcf
    u_bcf = np.dot(R_pa2bcf, n_pa)
    u_bcf_mag = (
        u_bcf[0]**2 + u_bcf[1]**2 + u_bcf[2]**2
    )**0.5  # using this instead of norm() for the benefit of CX derivatives
    u_bcf_unit = u_bcf / u_bcf_mag  # unit vector

    # get longitude (= xi1)
    longitude, d_long_dx = get_longitude(x_bcf, t, theta_1, theta_2, theta_3,
                                         ellipsmat, w0, wdot)

    # transformation matrix from BCF frame to F1 frame
    R_bcf2f1 = m_u.transform3(longitude)

    # up/normal vector in F1 frame
    u_f1 = np.dot(R_bcf2f1, u_bcf)

    # angle xi2 between F1 and F2 frames
    xi2 = m_u.atan2(np.asscalar(u_f1[0]), np.asscalar(u_f1[2]))

    # transformation matrix from F1 frame to F2 frame
    R_f12f2 = m_u.transform2(xi2)

    # up/normal vector in F2 frame
    u_f2 = np.dot(R_f12f2, u_f1)

    # angle xi3 between F2 and F3 frames
    xi3 = m_u.atan2(np.asscalar(u_f2[1]), np.asscalar(u_f2[2]))

    # transformation matrix from F2 frame to F3 frame
    R_f22f3 = m_u.transform1(xi3)

    # combine rotation matrices
    R_bcf2seu = np.dot(R_f22f3, np.dot(R_f12f2, R_bcf2f1))

    # unit vectors of SEU in BCF coordinates just for testing

    # s is i unit vector in F3
    s_bcf_unit = np.dot(R_bcf2seu, m_u.i_unit())

    # e is j unit vector in F3
    e_bcf_unit = np.dot(R_bcf2seu, m_u.j_unit())

    #print("Unit vectors from rotation matrix method")
    #print('s: ', s_bcf_unit)
    #print('e: ', e_bcf_unit)
    #print('u: ', u_bcf_unit)
    #print('')

    return R_bcf2seu
def get_bcf2seu_mat_crossp(x_bcf, t, theta_1, theta_2, theta_3, ellipsmat, w0,
                           wdot):
    """calculate the transformation matrix from BCF frame to SEU frame using cross products to define orthogonal vectors"""
    rbcf = x_bcf[0:3]
    vbcf = x_bcf[3:6]
    m_u = math_utilities.math_utilities_class()

    # BCF frame unit vectors, expressed in BCF frame
    i_bcf = m_u.i_unit()
    j_bcf = m_u.j_unit()
    k_bcf = m_u.k_unit()

    # ellipsoid normal vector in PA frame
    n_pa = get_n_pa(x_bcf, t, theta_1, theta_2, theta_3, ellipsmat, w0, wdot)
    n_pa_mag = (
        n_pa[0]**2 + n_pa[1]**2 + n_pa[2]**2
    )**0.5  # using this instead of norm() for the benefit of CX derivatives
    n_pa_unit = n_pa / n_pa_mag  # unit vector

    # transformation matrix between BCF and PA frames
    R_bcf2pa = get_R_bcf2pa(theta_1, theta_2, theta_3)
    R_pa2bcf = np.transpose(R_bcf2pa)

    # u (up) vector in BCF frame, i.e., n_bcf
    u_bcf = np.dot(R_pa2bcf, n_pa)
    u_bcf_mag = (
        u_bcf[0]**2 + u_bcf[1]**2 + u_bcf[2]**2
    )**0.5  # using this instead of norm() for the benefit of CX derivatives
    u_bcf_unit = u_bcf / u_bcf_mag  # unit vector

    # e (east) vector in BCF frame
    firstarg = m_u.crossmat(k_bcf)
    secondarg = 2.0 * np.dot(R_pa2bcf, np.dot(ellipsmat, np.dot(
        R_bcf2pa, rbcf)))
    e_bcf = np.dot(firstarg, secondarg)
    e_bcf_mag = (
        e_bcf[0]**2 + e_bcf[1]**2 + e_bcf[2]**2
    )**0.5  # using this instead of norm() for the benefit of CX derivatives
    e_bcf_unit = e_bcf / e_bcf_mag  # unit vector

    # s (south) vector in BCF frame
    e_bcf_cross = m_u.crossmat(e_bcf)
    s_bcf = np.dot(e_bcf_cross, u_bcf)
    s_bcf_mag = (
        s_bcf[0]**2 + s_bcf[1]**2 + s_bcf[2]**2
    )**0.5  # using this instead of norm() for the benefit of CX derivatives
    s_bcf_unit = s_bcf / s_bcf_mag  # unit vect

    # s (south) vector in BCF frame that actually points toward the pole; not necessarily perpendicular to east as defined in this routine
    firstarg = m_u.crossmat(k_bcf)
    secondarg = rbcf
    eps_bcf = np.dot(firstarg, secondarg)
    eps_bcf_mag = (
        eps_bcf[0]**2 + eps_bcf[1]**2 + eps_bcf[2]**2
    )**0.5  # using this instead of norm() for the benefit of CX derivatives
    eps_bcf_unit = eps_bcf / eps_bcf_mag  # unit vector
    eps_bcf_cross = m_u.crossmat(eps_bcf)
    s_pole_bcf = np.dot(eps_bcf_cross, u_bcf)
    s_pole_bcf_mag = (
        s_pole_bcf[0]**2 + s_pole_bcf[1]**2 + s_pole_bcf[2]**2
    )**0.5  # using this instead of norm() for the benefit of CX derivatives
    s_pole_bcf_unit = s_pole_bcf / s_pole_bcf_mag  # unit vect

    # transformation matrix
    R_bcf2seu = np.zeros((3, 3))

    R_bcf2seu[0, 0] = np.dot(np.transpose(s_bcf_unit), i_bcf)
    R_bcf2seu[0, 1] = np.dot(np.transpose(s_bcf_unit), j_bcf)
    R_bcf2seu[0, 2] = np.dot(np.transpose(s_bcf_unit), k_bcf)
    R_bcf2seu[1, 0] = np.dot(np.transpose(e_bcf_unit), i_bcf)
    R_bcf2seu[1, 1] = np.dot(np.transpose(e_bcf_unit), j_bcf)
    R_bcf2seu[1, 2] = np.dot(np.transpose(e_bcf_unit), k_bcf)
    R_bcf2seu[2, 0] = np.dot(np.transpose(u_bcf_unit), i_bcf)
    R_bcf2seu[2, 1] = np.dot(np.transpose(u_bcf_unit), j_bcf)
    R_bcf2seu[2, 2] = np.dot(np.transpose(u_bcf_unit), k_bcf)

    print("Unit vectors from cross product method")
    print('s: ', s_bcf_unit)
    print('s_pole: ', s_pole_bcf_unit)
    print('e: ', e_bcf_unit)
    print('eps: ', eps_bcf_unit)
    print('u: ', u_bcf_unit)
    print('')

    return R_bcf2seu, e_bcf_unit, s_bcf_unit, s_pole_bcf_unit
Esempio n. 10
0
    s_bcf_unit = np.dot(R_bcf2seu, m_u.i_unit())

    # e is j unit vector in F3
    e_bcf_unit = np.dot(R_bcf2seu, m_u.j_unit())

    #print("Unit vectors from rotation matrix method")
    #print('s: ', s_bcf_unit)
    #print('e: ', e_bcf_unit)
    #print('u: ', u_bcf_unit)
    #print('')

    return R_bcf2seu


# class instantiation
m_u = math_utilities.math_utilities_class()

# Parameters defining ellipsoid (km)
#a = 6378.14 # semimajor axis (Earth)
#b = 6378.14 # semiminaor axis (Earth)
#c = 6356.75 # semiintermediate axis (Earth)
a = 1.7
b = 1.1
c = 0.8

ellipsmat = get_ellipsmat(a, b, c)  # get matrix of ellipsoid parameters

# Euler angles between BCF frame and PA frame in rad (angles assumed to be constant)
#theta_1 = np.deg2rad(40.)
#theta_2 = np.deg2rad(70.)
#theta_3 = np.deg2rad(10.)