def prettifyLife(ax: mltax.Axes, N: int) -> None:
    if N <= 50:
        ax.grid()
        ax = plt.gca()
        ax.set_xticks(np.arange(-.5, N - 1, 1))
        ax.set_yticks(np.arange(-.51, N - 1, 1))
        ax.set_xticklabels(np.arange(0, N, 1))
        ax.set_yticklabels(np.arange(0, N, 1))
    elif N > 50 and N < 80:
        ax.grid()
        ax = plt.gca()
        labels = [" " for x in range(N)]
        plt.xticks(np.arange(-.5, N - 1, 1), labels)
        plt.yticks(np.arange(-.51, N - 1, 1), labels)
Esempio n. 2
0
def format_plot_3(plt_3: Axes, x_vals: List[int],
                  state_info_list: List[StateInfo]) -> BarContainer:
    """Adjust all properties of plot 3 to make it look nice.

    Add the x & y ticks, format those ticks, set the title, and place the
    text on the plot for the priority num plot.

    Parameters
    ----------
    plt_3 : `Axes`
        The object that describes the graph
    x_vals : `List[int]`
        The list of ints that shows the states' position's
    state_info_list : `List[StateInfo]`
        Continually updated list of state calculation info

    Returns
    -------
    `BarContainer`
        The objects describing the plotted bars

    """
    state_names = extract_state_names(state_info_list)
    priority_list = extract_priority(state_info_list)

    plt_3_bars: BarContainer = plt_3.bar(x_vals,
                                         priority_list,
                                         align="center",
                                         color="g")
    plt_3.set_xticks(x_vals)
    plt_3.set_xticklabels(state_names, rotation="vertical")

    y_formatter: FuncFormatter = FuncFormatter(comma_format_int())

    plt_3.set_ylabel("Priority value")
    plt_3.set_yscale("log")
    plt_3.get_yaxis().set_major_formatter(y_formatter)
    plt_3.text(0.3,
               0.9,
               "Highlighted, is the state with the highest priority value",
               transform=plt_3.transAxes)

    plt_3.grid(axis="y", which="major", lw=2)
    plt_3.grid(axis="y", which="minor", lw=0.75)
    plt_3.grid(axis="x", lw=0.75)

    plt_3.set_title("Priority values per state")

    return plt_3_bars
Esempio n. 3
0
def format_plot_2(plt_2: Axes, x_vals: List[int],
                  state_info_list: List[StateInfo]) -> BarContainer:
    """Adjust all properties of plot 2 to make it look nice.

    Add the x & y ticks, format those ticks, set the title, and place the
    text on the plot for the number of reps plot.

    Parameters
    ----------
    plt_2 : `Axes`
        The object that describes the graph
    x_vals : `List[int]`
        The list of ints that shows the states' position's
    state_info_list : `List[StateInfo]`
        Continually updated list of state calculation info

    Returns
    -------
    `BarContainer`
        The objects describing the plotted bars

    """
    state_names = extract_state_names(state_info_list)
    reps_list = extract_reps(state_info_list)

    plt_2_bars: BarContainer = plt_2.bar(x_vals,
                                         reps_list,
                                         align="center",
                                         color="r")
    plt_2.set_xticks(x_vals)
    plt_2.set_xticklabels(state_names, rotation="vertical")

    y_axis = plt_2.get_yaxis()

    minor_loc = MultipleLocator(5)
    y_axis.set_minor_locator(minor_loc)

    plt_2.set_ylabel("Representatives")
    plt_2.set_ylim(top=60, bottom=0)

    plt_2.grid(axis="y", which="major", lw=2)
    plt_2.grid(axis="y", which="minor", lw=0.75)
    plt_2.grid(axis="x", lw=0.75)

    plt_2.set_title("Representatives per state")

    return plt_2_bars
Esempio n. 4
0
def format_plot_1(plt_1: Axes, x_vals: List[int],
                  state_info_list: List[StateInfo]) -> PlotProps:
    """Adjust all properties of plot 1 to make it look nice.

    Add the x & y ticks, format those ticks, set the title, draw the mean
    line, and place the text on the plot for the pop_per_rep plot.

    Parameters
    ----------
    plt_1 : `Axes`
        The object that describes the graph
    x_vals : `List[int]`
        The list of ints that shows the states' positions
    state_info_list : `List[StateInfo]`
        Continually updated list of state calculation info

    Returns
    -------
    `PlotProps`
        A tuple of the plotted bars, text, and line objects

    """
    state_names = extract_state_names(state_info_list)
    pop_per_rep_list = extract_pop_per_rep(state_info_list)

    plt_1_bars: BarContainer = plt_1.bar(x_vals,
                                         pop_per_rep_list,
                                         align="center")

    plt_1.set_xticks(x_vals)
    plt_1.set_xticklabels(state_names, rotation="vertical")

    y_formatter = FuncFormatter(comma_format_int())

    plt_1.set_ylabel("People/Representative")
    plt_1.set_yscale("log")
    plt_1.get_yaxis().set_major_formatter(y_formatter)

    plt_1.set_title("People per representative per state")

    plt_1.grid(axis="y", which="major", lw=2)
    plt_1.grid(axis="y", which="minor", lw=0.75)
    plt_1.grid(axis="x", lw=0.75)

    mean_pop_per_seat: float = np.mean(pop_per_rep_list)
    std_dev_pop_per_seat: float = np.std(pop_per_rep_list)
    range_pop_per_seat: float = max(pop_per_rep_list) - min(pop_per_rep_list)
    geo_mean_pop_per_seat: float = geometric_mean(pop_per_rep_list)

    res_dict: PlotTextDict = {}

    res_dict["seat_txt"] = plt_1.text(0.25,
                                      0.75,
                                      f"Seat# 1",
                                      transform=plt_1.transAxes)
    res_dict["state_txt"] = plt_1.text(0.15,
                                       0.85,
                                       "State: ",
                                       transform=plt_1.transAxes)
    res_dict["mean_txt"] = plt_1.text(0.45,
                                      0.75,
                                      f"Mean: {mean_pop_per_seat:,.2f}",
                                      transform=plt_1.transAxes)
    res_dict["std_dev_txt"] = plt_1.text(
        0.35,
        0.85,
        f"Std. Dev. {std_dev_pop_per_seat:,.2f}",
        transform=plt_1.transAxes)
    res_dict["range_txt"] = plt_1.text(0.70,
                                       0.75,
                                       f"Range: {range_pop_per_seat:,.2f}",
                                       transform=plt_1.transAxes)
    res_dict["geo_mean_txt"] = plt_1.text(
        0.6,
        0.85,
        f"Geo. Mean: {geo_mean_pop_per_seat:,.2f}",
        transform=plt_1.transAxes)
    mean_line: Line2D = plt_1.axhline(y=mean_pop_per_seat,
                                      xmin=0.0,
                                      xmax=1.0,
                                      color="r")

    return (plt_1_bars, mean_line, res_dict)