def plot_das(res: xr.Dataset, ax: Axis, title: str = "DAS", cycler: Cycler | None = PlotStyle().cycler) -> None: """Plot DAS (Decay Associated Spectra) on ``ax``. Parameters ---------- res : xr.Dataset Result dataset ax : Axis Axis to plot on. title : str Title of the plot. Defaults to "DAS". cycler : Cycler | None Plot style cycler to use. Defaults to PlotStyle().cycler. """ add_cycler_if_not_none(ax, cycler) keys = [ v for v in res.data_vars if v.startswith(("decay_associated_spectra", "species_spectra")) ] for key in keys: das = res[key] das.plot.line(x="spectral", ax=ax) ax.set_title(title) ax.get_legend().remove()
def plot_norm_sas(res: xr.Dataset, ax: Axis, title: str = "norm SAS", cycler: Cycler | None = PlotStyle().cycler) -> None: """Plot normalized SAS (Species Associated Spectra) on ``ax``. Parameters ---------- res : xr.Dataset Result dataset ax : Axis Axis to plot on. title : str Title of the plot. Defaults to "norm SAS". cycler : Cycler | None Plot style cycler to use. Defaults to PlotStyle().cycler. """ add_cycler_if_not_none(ax, cycler) keys = [ v for v in res.data_vars if v.startswith(("species_associated_spectra", "species_spectra")) ] for key in keys: sas = res[key] # sas = res.species_associated_spectra (sas / np.abs(sas).max(dim="spectral")).plot.line(x="spectral", ax=ax) ax.set_title(title) ax.get_legend().remove()
def plot_sv_residual( res: xr.Dataset, ax: Axis, indices: Sequence[int] = range(10), cycler: Cycler | None = PlotStyle().cycler, ) -> None: """Plot singular values of the residual matrix. Parameters ---------- res : xr.Dataset Result dataset ax : Axis Axis to plot on. indices : Sequence[int] Indices of the singular vector to plot. Defaults to range(4). cycler : Cycler | None Plot style cycler to use. Defaults to PlotStyle().cycler. """ add_cycler_if_not_none(ax, cycler) if "weighted_residual_singular_values" in res: rSV = res.weighted_residual_singular_values else: rSV = res.residual_singular_values rSV.sel(singular_value_index=indices[:len(rSV.singular_value_index)] ).plot.line("ro-", yscale="log", ax=ax) ax.set_title("res. log(SV)")
def plot_rsv_residual( res: xr.Dataset, ax: Axis, indices: Sequence[int] = range(2), cycler: Cycler | None = PlotStyle().cycler, show_legend: bool = True, ) -> None: """Plot right singular vectors (spectra) of the residual matrix. Parameters ---------- res : xr.Dataset Result dataset ax : Axis Axis to plot on. indices : Sequence[int] Indices of the singular vector to plot. Defaults to range(4). cycler : Cycler | None Plot style cycler to use. Defaults to PlotStyle().cycler. show_legend: bool Whether or not to show the legend. Defaults to True. """ add_cycler_if_not_none(ax, cycler) if "weighted_residual_right_singular_vectors" in res: rRSV = res.weighted_residual_right_singular_vectors else: rRSV = res.residual_right_singular_vectors _plot_svd_vetors(rRSV, indices, "right_singular_value_index", ax, show_legend) ax.set_title("res. RSV")
def plot_concentrations( res: xr.Dataset, ax: Axis, center_λ: float | None, linlog: bool = False, linthresh: float = 1, linscale: float = 1, main_irf_nr: int = 0, cycler: Cycler | None = PlotStyle().cycler, title: str = "Concentrations", ) -> None: """Plot traces on the given axis ``ax``. Parameters ---------- res: xr.Dataset Result dataset from a pyglotaran optimization. ax: Axis Axis to plot the traces on center_λ: float | None Center wavelength (λ in nm) linlog: bool Whether to use 'symlog' scale or not. Defaults to False. linthresh: float A single float which defines the range (-x, x), within which the plot is linear. This avoids having the plot go to infinity around zero. Defaults to 1. linscale: float This allows the linear range (-linthresh to linthresh) to be stretched relative to the logarithmic range. Its value is the number of decades to use for each half of the linear range. For example, when linscale == 1.0 (the default), the space used for the positive and negative halves of the linear range will be equal to one decade in the logarithmic range. Defaults to 1. main_irf_nr: int Index of the main ``irf`` component when using an ``irf`` parametrized with multiple peaks. Defaults to 0. cycler : Cycler | None Plot style cycler to use. Defaults to PlotStyle().data_cycler_solid. title: str Title used for the plot axis. Defaults to "Concentrations". See Also -------- get_shifted_traces """ add_cycler_if_not_none(ax, cycler) traces = get_shifted_traces(res, center_λ, main_irf_nr) if "spectral" in traces.coords: traces.sel(spectral=center_λ, method="nearest").plot.line(x="time", ax=ax) else: traces.plot.line(x="time", ax=ax) ax.set_title(title) if linlog: ax.set_xscale("symlog", linthresh=linthresh, linscale=linscale)
def plot_residual( res: xr.Dataset, ax: Axis, linlog: bool = False, linthresh: float = 1, show_data: bool = False, cycler: Cycler | None = PlotStyle().cycler, ) -> None: """Plot data or residual on a 2D contour plot. Parameters ---------- res : xr.Dataset Result dataset ax : Axis Axis to plot on. linlog : bool Whether to use 'symlog' scale or not. Defaults to False. linthresh : float A single float which defines the range (-x, x), within which the plot is linear. This avoids having the plot go to infinity around zero. Defaults to 1. show_data : bool Whether to show the data or the residual. Defaults to False. cycler : Cycler | None Plot style cycler to use. Defaults to PlotStyle().cycler. """ add_cycler_if_not_none(ax, cycler) data = res.data if show_data else res.residual title = "dataset" if show_data else "residual" shape = np.array(data.shape) dims = data.coords.dims # Handle different dimensionality of data if min(shape) == 1: data.plot.line(x=dims[shape.argmax()], ax=ax) elif min(shape) < 5: data.plot(x="time", ax=ax) else: data.plot(x="time", ax=ax, add_colorbar=False) if linlog: ax.set_xscale("symlog", linthresh=linthresh) ax.set_title(title)
def plot_lsv_residual( res: xr.Dataset, ax: Axis, indices: Sequence[int] = range(2), linlog: bool = False, linthresh: float = 1, cycler: Cycler | None = PlotStyle().cycler, show_legend: bool = True, ) -> None: """Plot left singular vectors (time) of the residual matrix. Parameters ---------- res : xr.Dataset Result dataset ax : Axis Axis to plot on. indices : Sequence[int] Indices of the singular vector to plot. Defaults to range(4). linlog : bool Whether to use 'symlog' scale or not. Defaults to False. linthresh : float A single float which defines the range (-x, x), within which the plot is linear. This avoids having the plot go to infinity around zero. Defaults to 1. cycler : Cycler | None Plot style cycler to use. Defaults to PlotStyle().cycler. show_legend: bool Whether or not to show the legend. Defaults to True. """ add_cycler_if_not_none(ax, cycler) if "weighted_residual_left_singular_vectors" in res: rLSV = res.weighted_residual_left_singular_vectors else: rLSV = res.residual_left_singular_vectors _plot_svd_vetors(rLSV, indices, "left_singular_value_index", ax, show_legend) ax.set_title("res. LSV") if linlog: ax.set_xscale("symlog", linthresh=linthresh)
def file_vs_value_plot( a_x: Axis, field_name: str, row: pd.DataFrame, range_columns: List[str], fontsize: float, pad: float ) -> None: """Create a dot plot with one point per file""" assert field_name in ["rt_peak", "peak_height"] a_x.tick_params(direction="in", length=1, pad=pad, width=0.1, labelsize=fontsize) num_files = len(range_columns) a_x.scatter(range(num_files), row[:num_files], s=0.2) if field_name == "rt_peak": a_x.axhline(y=row["atlas RT peak"], color="r", linestyle="-", linewidth=0.2) range_columns += ["atlas RT peak"] a_x.set_ylim(np.nanmin(row.loc[range_columns]) - 0.12, np.nanmax(row.loc[range_columns]) + 0.12) else: a_x.set_yscale("log") a_x.set_ylim(bottom=1e4, top=1e10) a_x.set_xlim(-0.5, num_files + 0.5) a_x.xaxis.set_major_locator(mticker.FixedLocator(np.arange(0, num_files, 1.0))) _ = [s.set_linewidth(0.1) for s in a_x.spines.values()] # truncate name so it fits above a single subplot a_x.set_title(row.name[:33], pad=pad, fontsize=fontsize) a_x.set_xlabel("Files", labelpad=pad, fontsize=fontsize) ylabel = "Actual RTs" if field_name == "rt_peak" else "Peak Height" a_x.set_ylabel(ylabel, labelpad=pad, fontsize=fontsize)
def control_plot(data: (List[int], List[float], pd.Series, np.array), upper_control_limit: (int, float), lower_control_limit: (int, float), highlight_beyond_limits: bool = True, highlight_zone_a: bool = True, highlight_zone_b: bool = True, highlight_zone_c: bool = True, highlight_trend: bool = True, highlight_mixture: bool = True, highlight_stratification: bool = True, highlight_overcontrol: bool = True, ax: Axis = None): """ Create a control plot based on the input data. :param data: a list, pandas.Series, or numpy.array representing the data set :param upper_control_limit: an integer or float which represents the upper control limit, commonly called the UCL :param lower_control_limit: an integer or float which represents the upper control limit, commonly called the UCL :param highlight_beyond_limits: True if points beyond limits are to be highlighted :param highlight_zone_a: True if points that are zone A violations are to be highlighted :param highlight_zone_b: True if points that are zone B violations are to be highlighted :param highlight_zone_c: True if points that are zone C violations are to be highlighted :param highlight_trend: True if points that are trend violations are to be highlighted :param highlight_mixture: True if points that are mixture violations are to be highlighted :param highlight_stratification: True if points that are stratification violations are to be highlighted :param highlight_overcontrol: True if points that are overcontrol violations are to be hightlighted :param ax: an instance of matplotlib.axis.Axis :return: None """ data = coerce(data) if ax is None: fig, ax = plt.subplots() ax.plot(data) ax.set_title('Zone Control Chart') spec_range = (upper_control_limit - lower_control_limit) / 2 spec_center = lower_control_limit + spec_range zone_c_upper_limit = spec_center + spec_range / 3 zone_c_lower_limit = spec_center - spec_range / 3 zone_b_upper_limit = spec_center + 2 * spec_range / 3 zone_b_lower_limit = spec_center - 2 * spec_range / 3 zone_a_upper_limit = spec_center + spec_range zone_a_lower_limit = spec_center - spec_range ax.axhline(spec_center, linestyle='--', color='red', alpha=0.6) ax.axhline(zone_c_upper_limit, linestyle='--', color='red', alpha=0.5) ax.axhline(zone_c_lower_limit, linestyle='--', color='red', alpha=0.5) ax.axhline(zone_b_upper_limit, linestyle='--', color='red', alpha=0.3) ax.axhline(zone_b_lower_limit, linestyle='--', color='red', alpha=0.3) ax.axhline(zone_a_upper_limit, linestyle='--', color='red', alpha=0.2) ax.axhline(zone_a_lower_limit, linestyle='--', color='red', alpha=0.2) left, right = ax.get_xlim() right_plus = (right - left) * 0.01 + right ax.text(right_plus, upper_control_limit, s='UCL', va='center') ax.text(right_plus, lower_control_limit, s='LCL', va='center') ax.text(right_plus, (spec_center + zone_c_upper_limit) / 2, s='Zone C', va='center') ax.text(right_plus, (spec_center + zone_c_lower_limit) / 2, s='Zone C', va='center') ax.text(right_plus, (zone_b_upper_limit + zone_c_upper_limit) / 2, s='Zone B', va='center') ax.text(right_plus, (zone_b_lower_limit + zone_c_lower_limit) / 2, s='Zone B', va='center') ax.text(right_plus, (zone_a_upper_limit + zone_b_upper_limit) / 2, s='Zone A', va='center') ax.text(right_plus, (zone_a_lower_limit + zone_b_lower_limit) / 2, s='Zone A', va='center') plot_params = {'alpha': 0.3, 'zorder': -10, 'markersize': 14} if highlight_beyond_limits: beyond_limits_violations = control_beyond_limits( data=data, upper_control_limit=upper_control_limit, lower_control_limit=lower_control_limit) if len(beyond_limits_violations): plot_params['zorder'] -= 1 plot_params['markersize'] -= 1 ax.plot(beyond_limits_violations, 'o', color='red', label='beyond limits', **plot_params) if highlight_zone_a: zone_a_violations = control_zone_a( data=data, upper_control_limit=upper_control_limit, lower_control_limit=lower_control_limit) if len(zone_a_violations): plot_params['zorder'] -= 1 plot_params['markersize'] -= 1 ax.plot(zone_a_violations, 'o', color='orange', label='zone a violations', **plot_params) if highlight_zone_b: zone_b_violations = control_zone_b( data=data, upper_control_limit=upper_control_limit, lower_control_limit=lower_control_limit) if len(zone_b_violations): plot_params['zorder'] -= 1 plot_params['markersize'] -= 1 ax.plot(zone_b_violations, 'o', color='blue', label='zone b violations', **plot_params) if highlight_zone_c: zone_c_violations = control_zone_c( data=data, upper_control_limit=upper_control_limit, lower_control_limit=lower_control_limit) if len(zone_c_violations): plot_params['zorder'] -= 1 plot_params['markersize'] -= 1 ax.plot(zone_c_violations, 'o', color='green', label='zone c violations', **plot_params) if highlight_trend: zone_trend_violations = control_zone_trend(data=data) if len(zone_trend_violations): plot_params['zorder'] -= 1 plot_params['markersize'] -= 1 ax.plot(zone_trend_violations, 'o', color='purple', label='trend violations', **plot_params) if highlight_mixture: zone_mixture_violations = control_zone_mixture( data=data, upper_control_limit=upper_control_limit, lower_control_limit=lower_control_limit) if len(zone_mixture_violations): plot_params['zorder'] -= 1 plot_params['markersize'] -= 1 ax.plot(zone_mixture_violations, 'o', color='brown', label='mixture violations', **plot_params) if highlight_stratification: zone_stratification_violations = control_zone_stratification( data=data, upper_control_limit=upper_control_limit, lower_control_limit=lower_control_limit) if len(zone_stratification_violations): plot_params['zorder'] -= 1 plot_params['markersize'] -= 1 ax.plot(zone_stratification_violations, 'o', color='orange', label='stratification violations', **plot_params) if highlight_overcontrol: zone_overcontrol_violations = control_zone_overcontrol( data=data, upper_control_limit=upper_control_limit, lower_control_limit=lower_control_limit) if len(zone_overcontrol_violations): plot_params['zorder'] -= 1 plot_params['markersize'] -= 1 ax.plot(zone_overcontrol_violations, 'o', color='blue', label='overcontrol violations', **plot_params) ax.legend()