Esempio n. 1
0
def draw_bar_chart(dictionary, title, x_label, y_label):
    bar_chart = plt.bar(range(len(dictionary)), dictionary.values(), align='center',
                        color=cm.OrRd(np.linspace(.4, .8, 10)),
                        zorder=3)
    value_list = list(dictionary.values())
    high = max(value_list)
    plt.ylim([0, high + 10])
    plt.title(title)
    plt.ylabel(y_label)
    plt.xlabel(x_label)
    ax = plt.gca()
    ax.grid()
    ax.spines['top'].set_visible(False)
    ax.spines['right'].set_visible(False)
    # ax.spines['bottom'].set_visible(False)
    ax.spines['left'].set_visible(False)
    for tick in ax.xaxis.get_major_ticks() + ax.yaxis.get_major_ticks():
        tick.label.set_fontsize(8)

    plt.tick_params(top=False, bottom=False, left=False, right=False, labelleft=True, labelbottom=True)
    plt.xticks(range(len(dictionary)), list(dictionary.keys()), rotation=90)
    plt.tight_layout()
    # plt.subplots_adjust(left=0.1, right=0.95, top=0.9, bottom=0.25)
    auto_label(bar_chart)
    plt.savefig(ml_utils.get_dir_path() + title + '.png')
    plt.clf()
Esempio n. 2
0
def wscmap():
    # This function returns the colormap and bins for the PM spatial plots
    # this is designed to have a vmin =0 and vmax = 140
    # return cmap,bins
    colors1 = cm.viridis(linspace(0, 1, 128))
    colors2 = cm.OrRd(linspace(.2, 1, 128))
    colors = vstack((colors1, colors2))
    return mcolors.LinearSegmentedColormap.from_list('wscmap', colors), arange(
        0, 40.2, .2)
Esempio n. 3
0
def graph_color(data, maximum, svg_file):
	tree = ET.parse(svg_file)
	root = tree.getroot()
	gselect = r'{http://www.w3.org/2000/svg}g'
	paths = []

	for p in root.iter(gselect):
			paths.append(p)

	for path in paths:
		try:
			scale = data[path.attrib['id']] / maximum
			s = clrs.rgb2hex(cm.OrRd(scale))
			path.attrib['style'] = 'fill:' + s
		except KeyError:
			continue
	
	tree.write('out1.svg')
Esempio n. 4
0
def get_cmaps_biasCNN():
    """ 
  Create color maps
  """

    nsteps = 8
    colors_all_1 = np.moveaxis(
        np.expand_dims(cm.Greys(np.linspace(0, 1, nsteps)), axis=2), [0, 1, 2],
        [0, 2, 1])
    colors_all_2 = np.moveaxis(
        np.expand_dims(cm.GnBu(np.linspace(0, 1, nsteps)), axis=2), [0, 1, 2],
        [0, 2, 1])
    colors_all_3 = np.moveaxis(
        np.expand_dims(cm.YlGn(np.linspace(0, 1, nsteps)), axis=2), [0, 1, 2],
        [0, 2, 1])
    colors_all_4 = np.moveaxis(
        np.expand_dims(cm.OrRd(np.linspace(0, 1, nsteps)), axis=2), [0, 1, 2],
        [0, 2, 1])
    colors_all = np.concatenate((colors_all_1[np.arange(2, nsteps, 1), :, :],
                                 colors_all_2[np.arange(2, nsteps, 1), :, :],
                                 colors_all_3[np.arange(2, nsteps, 1), :, :],
                                 colors_all_4[np.arange(2, nsteps, 1), :, :],
                                 colors_all_2[np.arange(2, nsteps, 1), :, :]),
                                axis=1)

    int_inds = [3, 3, 3, 3]
    colors_main = np.asarray(
        [colors_all[int_inds[ii], ii, :] for ii in range(np.size(int_inds))])
    colors_main = np.concatenate((colors_main, colors_all[5, 1:2, :]), axis=0)
    # plot the color map
    #plt.figure();plt.imshow(np.expand_dims(colors_main,axis=0))
    colors_sf = np.moveaxis(
        np.expand_dims(cm.GnBu(np.linspace(0, 1, 8)), axis=2), [0, 1, 2],
        [0, 2, 1])
    colors_sf = colors_sf[np.arange(2, 8, 1), :, :]

    return colors_main, colors_sf
Esempio n. 5
0
def draw_hoods(boroughs, dataset):
    if dataset != "pickups" and dataset != "drops":
        raise Exception(
            "Error: the two datasets are 'pickups' and "
            "'drops', not ", str(dataset))

    datafile = 'neighborhoods/nyc-pediacities-neighborhoods-v3-polygon.geojson'
    hoodlist = parse_neighborhood_file(datafile)
    xlim = len(boroughs) == 5
    f1 = 15 if len(boroughs) == 5 else 10

    fig = pyplot.figure(1, figsize=(f1, 10))

    myplot = fig.add_subplot(111)

    if xlim:
        myplot.set_xlim(-74.35, -73.6)
        myplot.set_ylim(40.45, 40.95)

    hood_count = load_precomputed_count(boroughs)
    maxmin = load_precomputed_maxmin(boroughs)
    norm = colors.LogNorm(maxmin["min"][dataset]["count"],
                          maxmin["max"][dataset]["count"])

    for n in hoodlist.keys():

        # keep it to requested boroughs
        if hoodlist[n]["boroughCode"] not in boroughs:
            continue

        count = hood_count[n][dataset]
        color = colors.rgb2hex(cm.OrRd(norm(count)))

        if hoodlist[n]["location"]["type"] == "MultiPolygon":
            for c in hoodlist[n]["location"]["coordinates"]:
                patch = PolygonPatch({
                    "type": "Polygon",
                    "coordinates": c
                },
                                     fc=color,
                                     ec='#000000',
                                     alpha=1.0,
                                     zorder=2)
                myplot.add_patch(patch)

        else:
            patch = PolygonPatch(hoodlist[n]["location"],
                                 fc=color,
                                 ec="#000000",
                                 alpha=1.0,
                                 zorder=2)
            myplot.add_patch(patch)

    if not xlim:
        myplot.relim()
        myplot.autoscale_view()

    pyplot.xlabel("longitude")
    pyplot.ylabel("latitude")
    filename = ''.join(str(b) for b in boroughs)
    pyplot.savefig(filename + dataset + '.png', bbox_inches='tight', dpi=100)
Esempio n. 6
0
def draw_hoods3D(boroughs, dataset):
    if dataset != "pickups" and dataset != "drops":
        raise Exception(
            "Error: the two datasets are 'pickups' "
            "and 'drops', not ", str(dataset))

    datafile = 'neighborhoods/nyc-pediacities-neighborhoods-v3-polygon.geojson'
    hoodlist = parse_neighborhood_file(datafile)
    manhattan = len(boroughs) == 1 and boroughs[0] == 1

    fig = pyplot.figure(1, figsize=(7, 6))
    ax = fig.gca(projection='3d')

    ax.set_zlabel("# of rides")
    ax.set_xlabel("longitude")
    ax.set_ylabel("latitude")

    if manhattan:
        ax.set_xlim3d(-74.07, -73.85)
        ax.set_ylim3d(40.65, 40.90)
    else:
        ax.set_xlim3d(-74.35, -73.6)
        ax.set_ylim3d(40.45, 40.95)

    hood_count = load_precomputed_count(boroughs)
    maxmin = load_precomputed_maxmin(boroughs)

    norm = colors.LogNorm(maxmin["min"][dataset]["count"],
                          maxmin["max"][dataset]["count"])

    for n in hoodlist.keys():

        # keep it to requested boroughs
        if hoodlist[n]["boroughCode"] not in boroughs:
            continue

        count = hood_count[n][dataset]
        if norm(count) < 0:
            count = 0
        rgba = cm.OrRd(norm(count))
        color = colors.rgb2hex(rgba)
        tint = colors.rgb2hex(
            (rgba[0] * 0.9, rgba[1] * 0.9, rgba[2] * 0.9, rgba[3] * 0.9))

        if hoodlist[n]["location"]["type"] == "MultiPolygon":
            for c in hoodlist[n]["location"]["coordinates"]:
                patch = PolygonPatch({
                    "type": "Polygon",
                    "coordinates": c
                },
                                     fc=color,
                                     ec=tint,
                                     alpha=1.0,
                                     zorder=2)
                ax.add_patch(patch)
                art3d.pathpatch_2d_to_3d(patch, z=norm(count), zdir='z')

                num_coords = len(c[0])
                verts = []
                for i in range(num_coords):
                    P = c[0][i % num_coords]
                    Q = c[0][(i + 1) % num_coords]

                    x = [P[0], Q[0], Q[0], P[0]]
                    y = [P[1], Q[1], Q[1], P[1]]
                    z = [0, 0, norm(count), norm(count)]
                    verts.append(zip(x, y, z))

                coll = Poly3DCollection(verts)
                coll.set_facecolors(color)
                coll.set_edgecolors(tint)
                ax.add_collection3d(coll)

        else:
            patch = PolygonPatch(hoodlist[n]["location"],
                                 fc=color,
                                 ec=tint,
                                 alpha=1.0,
                                 zorder=2)
            ax.add_patch(patch)
            art3d.pathpatch_2d_to_3d(patch, z=norm(count), zdir='z')

            num_coords = len(hoodlist[n]["location"]["coordinates"][0])
            verts = []
            for i in range(num_coords):
                P = hoodlist[n]["location"]["coordinates"][0][i % num_coords]
                Q = hoodlist[n]["location"]["coordinates"][0][(i + 1) %
                                                              num_coords]

                x = [P[0], Q[0], Q[0], P[0]]
                y = [P[1], Q[1], Q[1], P[1]]
                z = [0, 0, norm(count), norm(count)]
                verts.append(zip(x, y, z))

            coll = Poly3DCollection(verts)
            coll.set_facecolors(color)
            coll.set_edgecolors(tint)
            ax.add_collection3d(coll)

    filename = ''.join(str(b) for b in boroughs)
    pyplot.savefig(filename + dataset + '.png', bbox_inches='tight', dpi=100)