Esempio n. 1
0
def draw_bar(days, START=None):
    data = get_freq(days, START)
    k = sorted(list(data.keys()))
    res = [0] * (k[1])
    for i in range(1, len(k) - 1):
        res += [data[k[i]]] * (k[i + 1] - k[i])
    res += [0] * (1440 - k[-1])

    x = np.array(list(range(len(res))))
    y = np.array(res)

    fig, ax = plt.subplots()

    colors = cm.YlGnBu(y / float(max(y)))
    ax.bar(x, y, width=1.0, color=colors)

    ticks = {}
    for hour in range(0, 24, 3):
        ticks[hour * 60] = '{}:00'.format(hour)
    ticks[24 * 60] = '0:00'

    ax.set_xticks(list(ticks.keys()))
    ax.set_xticks(list(range(0, 24 * 60, 60)), minor=True)
    ax.set_xticklabels(list(ticks.values()))

    ax.grid(b=True, which='minor', axis='x', linestyle='dotted')

    ax.set_xlim(6 * 60, 24 * 60)

    plt.show()
Esempio n. 2
0
def _create_colors(classes):
    n_cts = len(classes)
    color_norm = colors.Normalize(vmin=-n_cts / 3, vmax=n_cts)
    ct_arr = np.arange(n_cts)
    ct_colors = cm.YlGnBu(color_norm(ct_arr))

    return ct_colors
def _create_colors(lr):
    n_cts = lr.classes_.shape[0]
    color_norm = colors.Normalize(vmin=-n_cts / 3, vmax=n_cts)
    ct_arr = np.arange(n_cts)
    ct_colors = cm.YlGnBu(color_norm(ct_arr))

    return ct_colors
    def DrawLocalCurrents(self, bDraw=None):
        if bDraw==None:
            bDraw = self.cbOptions1.lines[2][0].get_visible()

        self.axCM.set_visible(bDraw)

        if bDraw and self.Gate is not None:
            #I = self.Mol.CurrentMatrix(self.Bias, self.Gate)
            I = self.Mol.LocalCurrents(self.Bias, self.Gate)
            
            #DisplayMatrix(I)
            I = np.real(I)
            maxCurrent = abs(I).max()
            print "Maximum current:", maxCurrent
            for i in range(self.Mol.N):
                for j in range(i+1,self.Mol.N):
                    Inet = (I[i,j]-I[j,i])/2
                    if abs(Inet)>maxCurrent*0.1:
                        color = cm.YlGnBu(1-math.log10(abs(Inet))/-10)
                        if Inet>0:
                            self.LCPlot[i,j].set_linewidth(Inet/maxCurrent*10)
                            self.LCPlot[i,j].set_color(color)
                            self.LCPlot[i,j].set_visible(True)
                            self.LCPlot[j,i].set_visible(False)
                            print "Current from", i, "to", j, "is", I[i,j]
                        else:
                            self.LCPlot[j,i].set_linewidth(-Inet/maxCurrent*10)
                            self.LCPlot[j,i].set_color(color)
                            self.LCPlot[j,i].set_visible(True)
                            self.LCPlot[i,j].set_visible(False)
                            print "Current from", j, "to", i, "is", -I[i,j]
                    else:
                        self.LCPlot[i,j].set_visible(False)
                        self.LCPlot[j,i].set_visible(False)
        else:
            for i in range(self.Mol.N):
                for j in range(self.Mol.N):
                    if i!=j:
                        self.LCPlot[i,j].set_visible(False)
            
        self.fig.canvas.draw()
# output colormap to txt file
#
# dependencies: matplotlib


from matplotlib import cm
import csv

with open('ylgnbu.txt', 'wb') as f:

    writer = csv.writer(f, delimiter=' ')
    for c in range(0,255):
        
        # in this case I picked YlGnBu but you can pick any 
        # color map you want.
        
        writer.writerow(cm.YlGnBu(c))
        
    f.close()
Esempio n. 6
0
def main(args, tick_font_size, label_font_size):
    lines = open(args.input_file).readlines()
    data_lines = lines[1:]
    experiment_names = lines[0].split()
    experiment_index = args.experiment_columns
    experiments = [experiment_names[ind] for ind in experiment_index]
    n_subfigs = len(experiments)

    corrected_p_threshold = args.alpha / sum(range(len(experiments)))

    #Bonferroni correction

    def fit_func(B, x):
        """y = m*x + b"""
        return B[0] * x + B[1]

    linear = Model(fit_func)

    fig = plt.figure()
    color_generator = iter(cm.magma(arange(0, 1, 1.0 / n_subfigs)))

    z = 0
    for i in range(n_subfigs):
        experiment1 = experiments[i]
        for j in range(n_subfigs):
            experiment2 = experiments[j]
            z += 1

            vals_1 = {}
            for line in data_lines:
                atoms = line.split()
                if atoms[experiment_index[i]] != 'NA':
                    #exclude NA values generated by ParTIES
                    score = float(atoms[experiment_index[i]])
                    ctrl_mean = mean([
                        float(atoms[n]) for n in range(len(atoms))
                        if n in args.control_columns
                    ])
                    vals_1[atoms[0]] = max(score - ctrl_mean, 0)

            vals_2 = {}
            for line in data_lines:
                atoms = line.split()
                if atoms[experiment_index[j]] != 'NA':
                    #exclude NA values generated by ParTIES
                    score = float(atoms[experiment_index[j]])
                    ctrl_mean = mean([
                        float(atoms[n]) for n in range(len(atoms))
                        if n in args.control_columns
                    ])
                    vals_2[atoms[0]] = max(score - ctrl_mean, 0)

            common_keys = set(vals_1.keys()) & set(vals_2.keys())

            x, y = [], []
            for akey in common_keys:
                x.append(vals_2[akey])
                y.append(vals_1[akey])

            slope, intercept, r_value, p_value, std_err = stats.linregress(
                x, y)
            rho, rho_p = stats.spearmanr(x, y)

            if i > j:
                if len(x) > 0 and len(y) > 0:
                    plt.subplot(n_subfigs, n_subfigs, z)
                    plt.hexbin(x,
                               y,
                               vmin=args.hexbin_vmin,
                               vmax=args.hexbin_vmax,
                               mincnt=1,
                               bins='log',
                               cmap=cm.viridis)

                    max_max = max(max(x), max(y))
                    xi = arange(0, max_max, 0.01)
                    line = slope * xi + intercept

                    mydata = RealData(array(x), array(y), sx=std(x), sy=std(y))

                    if not args.deactivate_ODR:
                        myodr = ODR(mydata, linear, beta0=[slope, intercept])
                        ODR_out = myodr.run()

                        if args.verbose:
                            ODR_out.pprint()

                        ODR_fitted_line = fit_func(ODR_out.beta, array(x))

                    lowess_arr = lowess(y, x, delta=0.01, return_sorted=True)
                    ys = lowess_arr[:, 1]
                    xs = lowess_arr[:, 0]

                    plt.plot(xs, ys, 'orange', lw=args.regression_line_width)
                    plt.plot(xi,
                             line,
                             ls='-',
                             color='red',
                             lw=args.regression_line_width)
                    if not args.deactivate_ODR:
                        plt.plot(x,
                                 ODR_fitted_line,
                                 "--",
                                 color='gray',
                                 lw=args.regression_line_width)

                    plt.axis(xmax=1.01, ymax=1.01, ymin=-0.01, xmin=-0.01)

                    ax = plt.gca()
                    current_xticklabels = ax.get_xticks()
                    current_yticklabels = ax.get_yticks()
                    ax.set_xticklabels([])
                    ax.set_yticklabels([])

                    plt.tick_params(axis='both',
                                    which='both',
                                    top='off',
                                    right='off')

                    if j == 0:
                        ax.set_yticklabels(current_yticklabels,
                                           fontsize=tick_font_size)
                        if args.show_axis_labels:
                            ax.set_ylabel(experiment1,
                                          fontsize=label_font_size,
                                          rotation=90,
                                          style=args.font_style)
                    if i == n_subfigs - 1:
                        ax.set_xticklabels(current_xticklabels,
                                           fontsize=tick_font_size,
                                           rotation=45)
                        if args.show_axis_labels:
                            ax.set_xlabel(experiment2,
                                          fontsize=label_font_size,
                                          style=args.font_style)

            elif i == j:
                plt.subplot(n_subfigs, n_subfigs, z)

                plt.tick_params(axis='both',
                                which='both',
                                top='off',
                                right='off')

                if len(x) > 0:
                    plt.hist(x,
                             bins=arange(0, 1, 0.025),
                             linewidth=0.3,
                             ec="white",
                             fc=next(color_generator))
                    plt.axis(ymin=0, ymax=args.histogram_max)

                    ax = plt.gca()
                    ax.set_yticks(ax.get_yticks()[::2])

                    ax.set_xticks(arange(0, 1.2, 0.2))
                    current_xticklabels = ax.get_xticks()
                    current_yticklabels = ax.get_yticks()
                    ax.set_xticklabels([], fontsize=tick_font_size)
                    ax.set_yticklabels(current_yticklabels,
                                       fontsize=tick_font_size)

                    if i == n_subfigs - 1:
                        ax.set_xticklabels(current_xticklabels,
                                           fontsize=tick_font_size,
                                           rotation=45)

                    if i > 0:
                        plt.tick_params(axis='both', labelleft='off')

            else:
                plt.subplot(n_subfigs, n_subfigs, z)
                ax = plt.gca()
                current_xticklabels = ax.get_xticks()
                ax.set_xticklabels(current_xticklabels,
                                   fontsize=tick_font_size)

                if not args.use_pearson:
                    ax.set_facecolor(cm.YlGnBu(rho))
                    if rho > 0.5:
                        if rho_p < corrected_p_threshold:
                            plt.text(0.2,
                                     0.4,
                                     "%.2f" % round(rho, 3),
                                     fontsize=1.5 * label_font_size,
                                     color='white')
                        else:
                            plt.text(0.2,
                                     0.4,
                                     "%.2f^" % round(rho, 3),
                                     fontsize=1.5 * label_font_size,
                                     color='white')
                    else:
                        if rho_p < corrected_p_threshold:
                            plt.text(0.2,
                                     0.4,
                                     "%.2f" % round(rho, 3),
                                     fontsize=1.5 * label_font_size,
                                     color='black')
                        else:
                            plt.text(0.2,
                                     0.4,
                                     "%.2f^" % round(rho, 3),
                                     fontsize=1.5 * label_font_size,
                                     color='black')
                else:
                    ax.set_facecolor(cm.YlGnBu(r_value))
                    if r_value > 0.5:
                        plt.text(0.2,
                                 0.4,
                                 "%.2f" % round(r_value, 3),
                                 fontsize=1.5 * label_font_size,
                                 color='white')
                    else:
                        plt.text(0.2,
                                 0.4,
                                 "%.2f" % round(r_value, 3),
                                 fontsize=1.5 * label_font_size,
                                 color='black')

                plt.tick_params(axis='both',
                                which='both',
                                bottom='off',
                                top='off',
                                left='off',
                                right='off',
                                labelbottom='off',
                                labelleft='off',
                                labelright='off')

                ax.spines['top'].set_visible(False)
                ax.spines['right'].set_visible(False)
                ax.spines['bottom'].set_visible(False)
                ax.spines['left'].set_visible(False)

    if args.show_colorbar:
        fig.subplots_adjust(right=0.8)
        cbar_ax = fig.add_axes([0.85, 0.4, 0.015, 0.4])

        cb_label = 'correlation plot hexbin scale (log10)'
        cb = plt.colorbar(cax=cbar_ax,
                          drawedges=False,
                          ticks=range(args.hexbin_vmin, args.hexbin_vmax + 1),
                          label=cb_label)
        current_yticklabels = cbar_ax.get_yticks()
        cbar_ax.set_yticklabels(range(args.hexbin_vmin, args.hexbin_vmax + 1),
                                fontsize=tick_font_size)
        cbar_ax.set_ylabel(cb_label, fontsize=label_font_size)
        cb.outline.set_linewidth(1)
        #cb.ax.get_children()[4].set_linewidths(1)

    plt.savefig(args.output_matrix_image, dpi=((args.image_resolution)))
Esempio n. 7
0
# d01 box
for i, (xlim, ylim, s,c) in enumerate(
        zip([xlim_d01, xlim_d02, xlim_d03], [ylim_d01, ylim_d02, ylim_d03],
            [15, 12, 9], ['b','g','r'])):

    ax.add_patch(mpl.patches.Rectangle((xlim[0], ylim[0]),
        xlim[1]-xlim[0], ylim[1]-ylim[0],
        fill=None, lw=1.5, edgecolor='r', zorder=10))

ax.add_feature(OCEAN, lw=0.5, ec='k', zorder=0, facecolor='w')
ax.add_feature(LAND,  lw=0.5, ec='k', zorder=1, facecolor='cornsilk')
ax.add_feature(LAKES, lw=0.5, ec='k', zorder=2, facecolor='w')
#ax.coastlines('50m', linewidth=1.5, )

white = np.ones((10,4))
high = cm.YlGnBu(np.linspace(0, 1, 128))
colors = np.vstack((white, high))
my_color = LinearSegmentedColormap.from_list('my_colormap',colors, N=24)
#

CS = ax.contour(to_np(lons), to_np(lats), roms.h, 
        levels=[10,50,100,200,500], linewidths=1.25, colors='k',  transform=proj)
CS.levels = [nf(val) for val in CS.levels]
ax.clabel(CS, CS.levels, fmt='%r', inline=True, fontsize=9, )

cn = ax.contourf(to_np(lons), to_np(lats), roms.h, np.arange(0,7000,500), cmap=my_color, transform=proj, )
cbar = fig.colorbar(cn, ax=ax, shrink=0.6, )
cbar.set_label("ROMS Bathymetry (m)", rotation=-90, va='bottom', fontsize=14)
cbar.add_lines(CS)

lonmin, lonmax, latmin, latmax = [118, 128, 27, 41]