Esempio n. 1
0
def plot_results(dists):
    for i, d in enumerate(dists):
        ax = plt.subplot(3,3,(4*i)+1)
        N, bins, patches = plt.hist(d.data, color="b",ec="k", bins=30, \
                                    range=tuple(d.lims), normed=True, \
                                    edgecolor="k", histtype='bar',linewidth=1.)
        fracs = N.astype(float)/N.max()
        norm = Normalize(-.2* fracs.max(), 1.5 * fracs.max())
        for thisfrac, thispatch in zip(fracs, patches):
            color = cm.gray_r(norm(thisfrac))
            thispatch.set_facecolor(color)
            thispatch.set_edgecolor("w")
        x = np.linspace(d.data.min(), d.data.max(), 100)
        ylim = ax.get_ylim()
        plt.plot(x, d.best.pdf(x), "-r", lw=1.5, alpha=0.7)
        ax.set_ylim(ylim)
        plt.axvline(d.best.MAPP, c="r", ls="--", lw=1.5)
        plt.tick_params(labelright=True, labelleft=False, labelsize=10)
        plt.xlim(d.lims)
        plt.locator_params(axis='x',nbins=10)
        if i < 2:
            plt.setp(ax.get_xticklabels(), visible=False)
        else:
            plt.xlabel(r"[$\mathregular{\alpha}$ / Fe]")
        plt.minorticks_on()
    def hist2D(dist1, dist2):
        """ Plot distribution and confidence contours. """
        X, Y = np.mgrid[dist1.lims[0] : dist1.lims[1] : 20j,
                        dist2.lims[0] : dist2.lims[1] : 20j]
        extent = [dist1.lims[0], dist1.lims[1], dist2.lims[0], dist2.lims[1]]
        positions = np.vstack([X.ravel(), Y.ravel()])
        values = np.vstack([dist1.data, dist2.data])
        kernel = stats.gaussian_kde(values)
        Z = np.reshape(kernel(positions).T, X.shape)
        ax.imshow(np.rot90(Z), cmap="gray_r", extent=extent, aspect="auto",
                  interpolation="spline16")
        plt.axvline(dist1.best.MAPP, c="r", ls="--", lw=1.5)
        plt.axhline(dist2.best.MAPP, c="r", ls="--", lw=1.5)
        plt.tick_params(labelsize=10)
        ax.minorticks_on()
        plt.locator_params(axis='x',nbins=10)
        return
    ax = plt.subplot(3,3,4)
    hist2D(dists[0], dists[1])
    plt.setp(ax.get_xticklabels(), visible=False)
    plt.ylabel("[Z/H]")
    plt.xlim(dists[0].lims)
    plt.ylim(dists[1].lims)
    ax = plt.subplot(3,3,7)
    hist2D(dists[0], dists[2])
    plt.ylabel(r"[$\mathregular{\alpha}$ / Fe]")
    plt.xlabel("log Age (yr)")
    plt.xlim(dists[0].lims)
    plt.ylim(dists[2].lims)
    ax = plt.subplot(3,3,8)
    plt.xlabel("[Z/H]")
    hist2D(dists[1], dists[2])
    plt.xlim(dists[1].lims)
    plt.ylim(dists[2].lims)
    return
Esempio n. 2
0
def plot_graph(weights, display=True, output_file=None, output_format="pdf"):
    """Plot a two dimensional array of weights.
    Parameters
    ----------
    display:        boolean, optional
                    show the plot of the graph
    output_file:    str or path, optional
                    path to file to save graph in, does not save per default
    output_format:  "pdf", "png" or "jpg"
    """
    cues = weights.index
    outcomes = weights.columns

    minimum = np.min(weights.values)
    maximum = np.max(weights.values)

    # colour code edge weights
    normalization = colors.Normalize(vmin=minimum, vmax=maximum)
    scale = cm.ScalarMappable(norm=normalization, cmap=cm.seismic)
    colours = scale.to_rgba(weights)
    colours = np.ndarray.flatten(colours).reshape(weights.size, -1)

    # structure graph
    bipartite_graph = nx.Graph()
    bipartite_graph.add_nodes_from(cues, bipartite=0)
    bipartite_graph.add_nodes_from(outcomes, bipartite=1)
    bipartite_graph.add_edges_from([(cue, outcome) for cue in cues
                                    for outcome in outcomes])
    left, right = nx.bipartite.sets(bipartite_graph)

    # make positions for each node
    # (multiply by len() of other partition to center)
    positions = dict()
    for idx, node in enumerate(left):
        positions[node] = (1, len(outcomes) * idx)
    for idx, node in enumerate(right):
        positions[node] = (2, len(cues) * idx)

    # make dictionary with labels
    labels = dict()
    for idx, cue in enumerate(chain(cues, outcomes)):
        labels[cue] = cue

    # shade nodes depending on activation level
    # (cues have fixed activation)
    activations = weights.sum(0)
    activations_normalized = softmax(activations)
    alphas = [0.5] * len(cues) + activations_normalized
    gray_values = cm.gray_r(alphas)

    # draw
    nx.draw(bipartite_graph,
            pos=positions,
            edge_color=colours,
            labels=labels,
            node_size=400,
            node_shape="o",
            node_color=gray_values)

    # display and save
    if display:
        plt.show()
    if output_file:
        plt.savefig(output_file, format=output_format)
    #Read morphology
    X = np.array(Line[1:], dtype="float64")
    Z = np.array((Lines[j + 1].strip().split(" "))[1:], dtype="float64")

    #Read concentrations
    X2 = np.array((Lines2[j].strip().split(" "))[1:], dtype="float64")
    N = np.array((Lines2[j + 1].strip().split(" "))[1:], dtype="float64")

    if (j == 1):
        CliffPositionXOld = X[0]
        TimeOld = 0
        ax1.plot(X,
                 Z,
                 '-',
                 lw=1.5,
                 color=cm.gray_r((Time + 1000) / (EndTime + 1000)))
        PlotTime += PlotInterval

    else:
        CliffPositionX = X[0]
        Times.append(Time)
        RR = (CliffPositionXOld - CliffPositionX) / (TimeOld - Time)
        RetreatRate.append(RR)

        # Platform gradient, measure bewteen 0.5 and -0.9m elevation
        TopInd = np.argmin(np.abs(Z - 0.5))
        BottomInd = np.argmin(np.abs(Z - (-0.9)))
        Grad = np.abs((Z[TopInd] - Z[BottomInd]) / (X[TopInd] - X[BottomInd]))
        PlatformGradient.append(Grad)

        if (Time == PlotTime):
Esempio n. 4
0
    #Read morphology
    X = np.array(Line[1:], dtype="float64")
    Z = np.array((Lines[j + 1].strip().split(" "))[1:], dtype="float64")

    #Read concentrations
    X2 = np.array((Lines2[j].strip().split(" "))[1:], dtype="float64")
    N = np.array((Lines2[j + 1].strip().split(" "))[1:], dtype="float64")

    if (j == 1):
        CliffPositionXOld = X[0]
        TimeOld = 0
        ax1.plot(X,
                 Z,
                 '-',
                 lw=1.5,
                 color=cm.gray_r((Time + 1000) / (EndTime + 1000)))
        PlotTime += PlotInterval

    else:
        CliffPositionX = X[0]
        Times.append(Time)
        RR = (CliffPositionXOld - CliffPositionX) / (TimeOld - Time)
        RetreatRate.append(RR)

        # Platform gradient, measure bewteen 0.5 and -0.9m elevation
        TopInd = np.argmin(np.abs(Z - 0.5))
        BottomInd = np.argmin(np.abs(Z - (-0.9)))
        Grad = np.abs((Z[TopInd] - Z[BottomInd]) / (X[TopInd] - X[BottomInd]))
        PlatformGradient.append(Grad)

        if (Time == PlotTime):
Esempio n. 5
0
 def _checker_image(self):
     pattern = (np.indices(self.get_shape()) // 8).sum(0) % 2
     return Image.fromarray(cm.gray_r(pattern / 2.0, bytes=True))
Esempio n. 6
0
def plot_CD(layer_thickness,
            thermal_conductivity,
            icb_heatflux,
            csb_heatflux,
            saveOn,
            figAspect=0.75):
    w, h = plt.figaspect(figAspect)
    # fig, (ax1,ax2,ax3) = plt.subplots(3,1,figsize=(1.25*w,1.25*h),sharex=True)
    fig = plt.figure(constrained_layout=True, figsize=(1.25 * w, 2 * h))
    spec = gridspec.GridSpec(ncols=1, nrows=3, figure=fig)
    ax1 = fig.add_subplot(spec[0, 0])
    ax2 = ax1.twinx()
    ax3 = fig.add_subplot(spec[1, 0], sharex=ax1)

    n = layer_thickness.size*thermal_conductivity.size \
        *icb_heatflux.size*csb_heatflux.size

    if n != 1:
        fig_label = [r'high $Le$', r'low $Le$']
        start = 0.2
        stop = 0.5
        cm_subsection = np.linspace(start, stop, n)
        colors = [cm.gray_r(x) for x in cm_subsection]

    # Load data
    k = 0
    for w, x, y, z in [(w, x, y, z) for w in layer_thickness
                       for x in icb_heatflux for y in csb_heatflux
                       for z in thermal_conductivity]:
        foldername, filename = get_outputDir(w, x, y, z)
        inputDir = "results/{}/{}/".format(foldername, filename)

        try:
            inputs, outputs, profiles = readdata(inputDir)
        except:
            print('{} does not exist'.format(inputDir))
            return

        # Calculate bulk modulus from PREM
        bulk_modulus = premvp(profiles.r)**2 * premdensity(profiles.r)

        # Calculate vp using slurry density and PREM bulk modulus
        vp_slurry = np.sqrt(bulk_modulus / profiles.density)

        # Calculate FVW P wave speed (Ohtaki et al. 2015, fig 11a)
        x = profiles.r / earth_radius
        vp_fvw = 3.3 * x[0] - 3.3 * x + 10.33

        max_diff = np.max((vp_fvw - vp_slurry * 1e-3) / vp_fvw * 100)
        print('Maximum difference with Ohtaki et al. (2015) is {:.2f}%'.format(
            max_diff))
        max_diff = np.max(
            (premvp(profiles.r) - vp_slurry) / premvp(profiles.r) * 100)
        print('Maximum difference with PREM is {:.2f}%'.format(max_diff))
        print('Density on slurry side of ICB is {:.2f}'.format(
            profiles.density[0]))
        density_jump = profiles.density[0] - profiles.density.iloc[-1]
        print('Density jump is {:.2f}'.format(density_jump))
        rho_bod = density_solidFe - profiles.density[0]
        print('Delta rho bod is {:.2f}'.format(rho_bod))
        rho_mod = rho_bod + density_jump
        print('Delta rho mod is {:.2f}'.format(rho_mod))

        # Plot P wave speed
        if n == 1:
            ax3.plot(profiles.r * 1e-3,
                     vp_slurry * 1e-3,
                     color='darkgrey',
                     lw=2,
                     label='slurry density')  #(km/s)
            ax3.vlines(profiles.r[0] * 1e-3,
                       vp_slurry[0] * 1e-3,
                       10.4,
                       color='darkgrey',
                       lw=2)
        else:
            ax3.plot(profiles.r * 1e-3,
                     vp_slurry * 1e-3,
                     color=colors[k],
                     lw=2,
                     label=fig_label[k])  #(km/s)
            ax3.vlines(profiles.r[0] * 1e-3,
                       vp_slurry[0] * 1e-3,
                       10.4,
                       color=colors[k],
                       lw=2)
        # Check density
        # ax3.plot(profiles.r*1e-3,premdensity(profiles.r),'k--')
        # ax3.plot(profiles.r*1e-3,profiles.density)
        k += 1

    # Plot temperature and composition
    ax1.plot(profiles.r * 1e-3,
             profiles.temp,
             lw=2,
             color='red',
             label='temperature')
    (mass_conc_O, acore) = getcsbmassoxygen(inputs.oxygen_bulk)
    acore = float(acore)
    ax2.plot(profiles.r * 1e-3,
             profiles.oxygen * acore / aO * 100,
             lw=2,
             color='blue',
             label='oxygen')

    # Plot FVW, PREM and AK135
    ax3.plot(profiles.r * 1e-3,
             vp_fvw,
             color='black',
             lw=2,
             ls=':',
             label='Ohtaki et al. (2015)')
    ax3.vlines(profiles.r[0] * 1e-3,
               vp_fvw[0],
               10.4,
               color='black',
               ls=':',
               lw=2)
    ax3.plot(profiles.r * 1e-3,
             premvp(profiles.r) * 1e-3,
             color='k',
             ls='--',
             label='PREM')
    ax3.vlines(profiles.r[0] * 1e-3,
               premvp(profiles.r[0]) * 1e-3,
               10.4,
               'k',
               linestyle='--')
    # ax3.plot(radius_ak135*1e-3,vp_ak135*1e-3,'k',label='ak135')
    # ax3.vlines(radius_ak135[0]*1e-3,vp_ak135[0]*1e-3,10.4, 'k')

    ax3.legend(fontsize=11.5, loc='upper right')
    ax1.set(ylabel="Temperature (K)")
    ax1.spines["right"].set_edgecolor('red')
    ax1.spines["right"].set_edgecolor('blue')
    ax1.yaxis.label.set_color('red')
    ax2.set(ylabel="Oxygen (mol.%)")
    ax2.spines["left"].set_edgecolor('red')
    ax2.spines["right"].set_edgecolor('blue')
    ax2.yaxis.label.set_color('blue')
    ax2.tick_params(axis='y', colors='blue')
    ax1.tick_params(axis='y', which='both', colors='red')
    ax3.set(xlabel="Radius (km)")
    ax3.set(ylabel="P wave speed (km/s)")
    ax3.set_xlim([1200, profiles.r.iloc[-1] * 1e-3])
    ax3.set_ylim([10.25, 10.4])
    major_xticks = np.arange(1200, 1370, 20)
    minor_xticks = np.arange(1200, 1370, 5)
    ax1.set_xticks(major_xticks)
    ax1.set_xticks(minor_xticks, minor=True)
    ax2.set_xticks(major_xticks)
    ax2.set_xticks(minor_xticks, minor=True)
    ax3.set_xticks(major_xticks)
    ax3.set_xticks(minor_xticks, minor=True)
    major_yticks = np.arange(5500, 5751, 100)
    minor_yticks = np.arange(5500, 5751, 20)
    ax1.set_yticks(major_yticks)
    ax1.set_yticks(minor_yticks, minor=True)
    ax1.grid(which='minor', alpha=0.2)
    ax1.grid(which='major', alpha=0.5)
    ax1.tick_params(which='major', length=7)
    ax1.tick_params(which='minor', length=3.5)
    # major_yticks = np.arange(6.5,8.1,0.5)
    # minor_yticks = np.arange(6.5,8.1,0.1)
    # ax2.set_yticks(major_yticks)
    # ax2.set_yticks(minor_yticks, minor=True)
    # ax2.grid(which='minor', alpha=0.2)
    # ax2.grid(which='major', alpha=0.5)
    # ax2.tick_params(which='major',length = 7)
    # ax2.tick_params(which='minor',length = 3.5)
    major_yticks = np.arange(10.25, 10.4, 0.05)
    minor_yticks = np.arange(10.25, 10.4, 0.01)
    ax3.set_yticks(major_yticks)
    ax3.set_yticks(minor_yticks, minor=True)
    ax3.grid(which='minor', alpha=0.2)
    ax3.grid(which='major', alpha=0.5)
    ax3.tick_params(which='major', length=7)
    ax3.tick_params(which='minor', length=3.5)

    if saveOn == 1:
        saveDir = 'figures/seismic/'
        if not os.path.exists(saveDir + foldername):
            os.makedirs(saveDir + foldername)
        fig.savefig(saveDir + foldername + "/" + filename + "_CD.pdf",
                    format='pdf',
                    dpi=200,
                    bbox_inches='tight')
        fig.savefig(saveDir + foldername + "/" + filename + "_CD.png",
                    format='png',
                    dpi=200,
                    bbox_inches='tight')
        print('Figure saved as {}'.format(saveDir + foldername + "/" +
                                          filename + "_CD.pdf"))
    plt.show()

    return profiles.r, vp_slurry, profiles.density, vp_fvw
Esempio n. 7
0
def plot_seismic_dark(layer_thickness,
                      thermal_conductivity,
                      icb_heatflux,
                      csb_heatflux,
                      saveOn,
                      figAspect=0.75):
    w, h = plt.figaspect(figAspect)
    fig, ax = plt.subplots(1, 1, figsize=(1.25 * w, 1.25 * h))

    n = layer_thickness.size*thermal_conductivity.size \
        *icb_heatflux.size*csb_heatflux.size

    if n != 1:
        fig_label = [r'high $Le$', r'low $Le$']
        start = 0.2
        stop = 0.5
        cm_subsection = np.linspace(start, stop, n)
        colors = [cm.gray_r(x) for x in cm_subsection]

    # Load data
    k = 0
    for w, x, y, z in [(w, x, y, z) for w in layer_thickness
                       for x in icb_heatflux for y in csb_heatflux
                       for z in thermal_conductivity]:
        foldername, filename = get_outputDir(w, x, y, z)
        inputDir = "results/{}/{}/".format(foldername, filename)

        try:
            inputs, outputs, profiles = readdata(inputDir)
        except:
            print('{} does not exist'.format(inputDir))
            return

        # Calculate bulk modulus from PREM
        bulk_modulus = premvp(profiles.r)**2 * premdensity(profiles.r)

        # Calculate vp using slurry density and PREM bulk modulus
        vp_slurry = np.sqrt(bulk_modulus / profiles.density)

        # Calculate FVW P wave speed (Ohtaki et al. 2015, fig 11a)
        x = profiles.r / earth_radius
        vp_fvw = 3.3 * x[0] - 3.3 * x + 10.33

        max_diff = np.max((vp_fvw - vp_slurry * 1e-3) / vp_fvw * 100)
        print('Maximum difference with Ohtaki et al. (2015) is {:.2f}%'.format(
            max_diff))
        max_diff = np.max(
            (premvp(profiles.r) - vp_slurry) / premvp(profiles.r) * 100)
        print('Maximum difference with PREM is {:.2f}%'.format(max_diff))
        print('Density on slurry side of ICB is {:.2f}'.format(
            profiles.density[0]))
        density_jump = profiles.density[0] - profiles.density.iloc[-1]
        print('Density jump is {:.2f}'.format(density_jump))
        rho_bod = density_solidFe - profiles.density[0]
        print('Delta rho bod is {:.2f}'.format(rho_bod))
        rho_mod = rho_bod + density_jump
        print('Delta rho mod is {:.2f}'.format(rho_mod))

        # Plot P wave speed
        if n == 1:
            ax.plot(profiles.r * 1e-3,
                    vp_slurry * 1e-3,
                    color='darkgrey',
                    lw=2,
                    label='slurry')  #(km/s)
            ax.vlines(profiles.r[0] * 1e-3,
                      vp_slurry[0] * 1e-3,
                      10.4,
                      color='darkgrey',
                      lw=2)
        else:
            ax.plot(profiles.r * 1e-3,
                    vp_slurry * 1e-3,
                    color=colors[k],
                    lw=2,
                    label=fig_label[k])  #(km/s)
            ax.vlines(profiles.r[0] * 1e-3,
                      vp_slurry[0] * 1e-3,
                      10.4,
                      color=colors[k],
                      lw=2)
        # Check density
        # ax1.plot(profiles.r*1e-3,premdensity(profiles.r),'k--')
        # ax1.plot(profiles.r*1e-3,profiles.density)
        k += 1

    # Look up AK135
    radius_ak135 = ak135radius()
    vp_ak135 = ak135vp(radius_ak135)

    ax.plot(profiles.r * 1e-3,
            vp_fvw,
            color='blue',
            lw=2,
            ls=':',
            label='Ohtaki et al. (2015)')
    ax.vlines(profiles.r[0] * 1e-3,
              vp_fvw[0],
              10.4,
              color='blue',
              lw=2,
              ls=':')
    ax.plot(profiles.r * 1e-3,
            premvp(profiles.r) * 1e-3,
            color='white',
            ls='--',
            label='PREM')
    ax.vlines(profiles.r[0] * 1e-3,
              premvp(profiles.r[0]) * 1e-3,
              10.4,
              'white',
              linestyle='--')
    ax.plot(radius_ak135 * 1e-3, vp_ak135 * 1e-3, 'white', label='ak135')
    ax.vlines(radius_ak135[0] * 1e-3, vp_ak135[0] * 1e-3, 10.4, 'white')

    ax.legend(fontsize=11.5)
    ax.set(xlabel="Radius (km)")
    ax.set(ylabel="P wave speed (km/s)")
    ax.set_xlim([1200, profiles.r.iloc[-1] * 1e-3])
    ax.set_ylim([10.1, 10.4])
    plt.yticks(np.arange(10.1, 10.41, 0.1))

    if saveOn == 1:
        saveDir = 'figures/seismic/'
        if not os.path.exists(saveDir + foldername):
            os.makedirs(saveDir + foldername)
        fig.savefig(saveDir + foldername + "/" + filename + "_dark.pdf",
                    format='pdf',
                    dpi=200,
                    bbox_inches='tight')
        fig.savefig(saveDir + foldername + "/" + filename + "_dark.png",
                    format='png',
                    dpi=200,
                    bbox_inches='tight')
        print('Figure saved as {}'.format(saveDir + foldername + "/" +
                                          filename + ".pdf"))
    plt.show()

    return profiles.r, vp_slurry, profiles.density
Esempio n. 8
0
def main():
    alpha21 = '-' + IUPAC.protein.letters

    parser = argparse.ArgumentParser(description='Visualize Potts Models')
    parser.add_argument('bimarg')
    parser.add_argument('couplings')
    parser.add_argument('-alphamap', help='map from 21 letters to alpha')
    parser.add_argument('-unimarg21', help='21 letter univariate marginals')
    parser.add_argument('-contactfreq', help='contact frequency file')
    parser.add_argument('-contactmode',
                        choices=['split', 'overlay', 'splitoverlay'],
                        default='overlay',
                        help='how to draw contact map')
    parser.add_argument('-score',
                        default='fbwsqrt',
                        choices=['fb', 'fbw', 'fbwsqrt', 'DI', 'MI', 'Xij'])
    parser.add_argument('-gauge',
                        default='skip',
                        choices=['skip', 'nofield', '0', 'w', 'wsqrt'])
    parser.add_argument('-alpha', default=alpha21)
    parser.add_argument('-annotimg', help='annotation image')
    parser.add_argument('-title', help='Figure title')
    parser.add_argument('-grid', type=int, default=10, help='grid spacing')
    parser.add_argument('-cnsrv', help='show conservation score')
    parser.add_argument('-Xijseq', help='seq ')
    parser.add_argument('-deltaXijseq', help='seq ')
    parser.add_argument('-pcN', help='small jeffreys pseudocount to add')

    args = parser.parse_args(sys.argv[1:])

    alpha = args.alpha
    alpha21 = '-' + IUPAC.protein.letters

    ff = np.load(args.bimarg)
    J = np.load(args.couplings)

    if args.pcN:
        N = float(args.pcN)
        ff = mutation_pc(ff, N)

    unimarg = getUnimarg(ff)

    L, q = getLq(J)

    if args.gauge == 'nofield':
        h, J = changeGauge.fieldlessEven(zeros((L, q)), J)
    elif args.gauge == '0':
        h, J = changeGauge.zeroGauge(zeros((L, q)), J)
    elif args.gauge == 'w':
        h, J = changeGauge.zeroGauge(zeros((L, q)), J, weights=ff)
    elif args.gauge == 'wsqrt':
        h, J = changeGauge.zeroGauge(zeros((L, q)), J, weights=np.sqrt(ff))
    else:
        h = zeros((L, q))

    if args.deltaXijseq or args.Xijseq:
        Xij, Xijab = getXij(J, ff)

        if args.deltaXijseq:
            if args.Xijseq:
                raise ValueError("deltaXijseq, Xijseq are mutually exclusive")
            seq = args.deltaXijseq
            Xijab = Xijab - Xij
        else:
            seq = args.Xijseq

        seq = np.array([alpha.index(c) for c in seq], dtype='u4')
        pottsScore = np.array([
            Xijab[n, q * seq[i] + seq[j]] for n, (i, j) in enumerate(
                (i, j) for i in range(L - 1) for j in range(i + 1, L))
        ])
    elif args.score == 'fb':
        h0, J0 = changeGauge.zeroGauge(h, J)
        pottsScore = sqrt(sum(J0**2, axis=1))
    elif args.score == 'fbw':
        w = ff
        hw, Jw = changeGauge.zeroGauge(zeros((L, q)), J, weights=w)
        pottsScore = sqrt(sum((Jw * w)**2, axis=1))
    elif args.score == 'fbwsqrt':
        w = sqrt(ff)
        hw, Jw = changeGauge.zeroGauge(zeros((L, q)), J, weights=w)
        pottsScore = sqrt(sum((Jw * w)**2, axis=1))
    elif args.score == 'Xij':
        C = ff - indepF(ff)
        X = -np.sum(C * J, axis=1)
        pottsScore = X
    elif args.score == 'MI':
        pottsScore = np.sum(rel_entr(ff, indepF(ff)), axis=-1)
    else:
        raise Exception("Not yet implemented")

    if args.alphamap:
        unimarg21 = np.load(args.unimarg21)

        with open(args.alphamap) as f:
            alphamap = [l.split()[1:] for l in f.readlines()]
            # replace "junk" entry in alpha map with '*'
            alphamap_color = []
            for l, a in enumerate(alphamap):
                clet = []
                for g in a:
                    if g == '*':
                        clet.append([])
                        continue
                    linds = [alpha21.index(c) for c in g]
                    f = array([unimarg21[l, i] for i in linds])
                    let_dat = zip(g, f / sum(f))
                    let_dat.sort(key=lambda x: x[1], reverse=True)
                    clet.append(let_dat)
                alphamap_color.append(clet)
    else:
        alphamap_color = [[[(c, 1.0)] for c in alpha] for i in range(L)]

    ss = 0.4

    contactfig = plt.figure(figsize=(11, 10))
    xscale = 10.0 / 11.0
    yscale = 10.0 / 10.0

    main_ax = plt.axes(
        (0.01 * xscale, 0.1 * yscale, 0.89 * xscale, 0.89 * yscale), zorder=3)
    cbar_ax = plt.axes((10.05 / 11, 0.1 * yscale, 0.3 / 11, 0.89 * yscale),
                       zorder=3)

    if args.annotimg:
        try:
            ssim = np.load(args.annotimg)
        except ValueError:
            from PIL import Image
            ssim = np.array(Image.open(args.annotimg))

        ax = plt.axes(
            (0.01 * xscale, 0.02 * yscale, 0.89 * xscale, 0.08 * yscale),
            sharex=main_ax)
        ax.set_axis_off()
        ax.imshow(ssim,
                  extent=(-0.5, L - 0.5, 0, 16),
                  interpolation='bicubic',
                  aspect='auto')
        ax = plt.axes(
            (0.9 * xscale, 0.1 * yscale, 0.08 * xscale, 0.89 * yscale),
            sharey=main_ax)
        ax.set_axis_off()
        ax.imshow(ssim.transpose((1, 0, 2))[::-1, :, :],
                  extent=(0, 16, -0.5, L - 0.5),
                  interpolation='bicubic',
                  aspect='auto')

    if args.contactfreq and args.contactmode == 'overlay':
        cont = getM(np.load(args.contactfreq))
        # assume grayscale [0,1]
        cont = cm.gray_r(cont * 0.2)
        main_ax.imshow(cont,
                       origin='lower',
                       extent=(+o, L + o, +o, L + o),
                       interpolation='nearest')

        scores = getM(pottsScore)
        img = main_ax.imshow(scores,
                             origin='lower',
                             cmap=alphared,
                             extent=(+o, L + o, +o, L + o),
                             interpolation='nearest')
        cbar = contactfig.colorbar(img, cax=cbar_ax)
        cbar = DraggableColorbar(cbar, img)
        cbar.connect()
    elif args.contactfreq and args.contactmode == 'split':
        lotri = ones((L, L), dtype=bool)
        lotri[triu_indices(L, k=1)] = False
        hitri = zeros((L, L), dtype=bool)
        hitri[triu_indices(L, k=1)] = True

        upper = getM(pottsScore)
        upper[hitri] = nan
        img = main_ax.imshow(upper,
                             origin='lower',
                             cmap='Blues',
                             extent=(+o, L + o, +o, L + o),
                             interpolation='nearest')
        cbar = contactfig.colorbar(img, cax=cbar_ax)
        cbar = DraggableColorbar(cbar, img)
        cbar.connect()

        lower = getM(np.load(args.contactfreq))
        lower[lotri] = nan
        main_ax.imshow(lower,
                       origin='lower',
                       cmap='Reds',
                       extent=(+o, L + o, +o, L + o),
                       interpolation='nearest')
    if args.contactfreq and args.contactmode == 'splitoverlay':
        lotri = ones((L, L), dtype=bool)
        lotri[triu_indices(L, k=1)] = False
        hitri = zeros((L, L), dtype=bool)
        hitri[triu_indices(L, k=1)] = True

        cont = getM(np.load(args.contactfreq))
        cont = cm.gray_r(cont * 0.2)
        main_ax.imshow(cont,
                       origin='lower',
                       extent=(+o, L + o, +o, L + o),
                       interpolation='nearest')

        upper = getM(pottsScore)
        upper[hitri] = nan
        img = main_ax.imshow(upper,
                             origin='lower',
                             cmap=alphared,
                             extent=(+o, L + o, +o, L + o),
                             interpolation='nearest')
        cbar = contactfig.colorbar(img, cax=cbar_ax)
        cbar = DraggableColorbar(cbar, img)
        cbar.connect()
    else:
        img = main_ax.imshow(getM(pottsScore),
                             origin='lower',
                             cmap='gray_r',
                             extent=(+o, L + o, +o, L + o),
                             interpolation='nearest')
        cbar = contactfig.colorbar(img, cax=cbar_ax)
        cbar = DraggableColorbar(cbar, img)
        cbar.connect()

    if args.title:
        plt.title(args.title)

    if args.grid:
        main_ax.set_xticks(np.arange(0, L, 10))
        main_ax.set_yticks(np.arange(0, L, 10))
        main_ax.grid(color='black', linestyle=':', linewidth=0.2)

    gridfig_size = tuple(0.2 * x for x in (6 + q, 6 + q))

    margfig = plt.figure(figsize=gridfig_size, facecolor='white')
    margax = plt.axes([0, 0, 1, 1])

    Cfig = plt.figure(figsize=gridfig_size, facecolor='white')
    Cax = plt.axes([0, 0, 1, 1])

    Jfig = plt.figure(figsize=gridfig_size, facecolor='white')
    Jax = plt.axes([0, 0, 1, 1])

    ijpicker = PositionPicker(contactfig, (margax, Cax, Jax), alphamap_color,
                              J, h, ff, pottsScore)

    plt.show()
Esempio n. 9
0
def drawMarg(alphacolor, q, i, j, marg, J, hi, hj, score, margax, Cax, Jax):
    graytext = lambda x: {
        'text': "{:.2f}".format(x),
        'color': cm.gray_r(fnorm(x))
    }
    bwrtext = lambda x: {'text': "{:.2f}".format(x), 'color': cm.bwr(fnorm(x))}
    rwbtext = lambda x: {
        'text': "{:.2f}".format(x),
        'color': cm.bwr_r(fnorm(x))
    }
    mapi = alphacolor[i]
    mapj = alphacolor[j]

    for ax in (margax, Cax, Jax):
        ax.set_axis_off()
        ax.set_xlim(0, 6 + q)
        ax.set_ylim(0, 1 * (q + 5))

    fnorm = Normalize(0, 0.1, clip=True)
    drawGrid(margax,
             3,
             1,
             1,
             q,
             q, [[graytext(x) for x in r] for r in marg],
             mapi,
             mapj,
             '({}, {})   Bimarg'.format(i, j),
             list(map(graytext, sum(marg, axis=1))),
             list(map(graytext, sum(marg, axis=0))),
             labeltext=alphatext)

    fnorm = Normalize(-1, 1.0, clip=True)
    C = marg - outer(sum(marg, axis=1), sum(marg, axis=0))
    Cmax = np.max(np.abs(C))
    drawGrid(Cax,
             3,
             1,
             1,
             q,
             q, [[rwbtext(x) for x in r] for r in C / Cmax],
             mapi,
             mapj,
             '({}, {})   C * {}'.format(i, j, str(Cmax)),
             None,
             None,
             labeltext=alphatext)

    fnorm = Normalize(-1, 1.0, clip=True)
    drawGrid(Jax,
             3,
             1,
             1,
             q,
             q, [[bwrtext(x) for x in r] for r in J],
             mapi,
             mapj,
             '({}, {})   J score={:.2f}'.format(i, j, score),
             list(map(bwrtext, hi)),
             list(map(bwrtext, hj)),
             labeltext=alphatext)
Esempio n. 10
0
 metal = Dist(metal_data, [-2.25, 0.90])
 alpha_data = np.loadtxt("Chain_0/alpha_dist.txt")
 alpha = Dist(alpha_data, [-0.3, 0.5])
 dists = [ages, metal, alpha]
 log, summary = [r"{0:28s}".format(spec)], []
 for i, d in enumerate(dists):
     weights = np.ones_like(d.data)/len(d.data)
     ax = plt.subplot(3,3,(4*i)+1)
     # plt.tick_params(labelsize=10)
     N, bins, patches = plt.hist(d.data, color="b",ec="k", bins=30,
         range=tuple(lims[i]), normed=True, edgecolor="k",
                                 histtype='bar',linewidth=1.)
     fracs = N.astype(float)/N.max()
     norm = Normalize(-.2* fracs.max(), 1.5 * fracs.max())
     for thisfrac, thispatch in zip(fracs, patches):
         color = cm.gray_r(norm(thisfrac))
         thispatch.set_facecolor(color)
         thispatch.set_edgecolor("w")
     x = np.linspace(d.data.min(), d.data.max(), 100)
     tot = np.zeros_like(x)
     # for m,w,c in zip(d.gmm.best.means_, d.gmm.best.weights_,
     #                  d.gmm.best.covars_):
     #     y = w * normpdf(x, m, np.sqrt(c))[0]
     #     ax.plot(x, y, "--b")
     #     tot += y
     # ax.plot(x,tot, "-b", lw=2)
     # pdf = np.exp(logprob)
     # pdf_individual = responsibilities * pdf[:, np.newaxis]
     # print pdf_individual
     ylim = ax.get_ylim()
     plt.plot(x, d.best.pdf(x), "-r", label="AD = {0:.1f}".format(
Esempio n. 11
0
def plot(chain, ages, metal, alpha):
    dists = [ages, metal, alpha]
    log, summary = [r"{0:28s}".format(spec)], []
    lims = [[9 + np.log10(1.), 9 + np.log10(15.)], [-2.25, 0.90], [-0.3, 0.5]]
    plims = [[np.log10(1.), 1.2], [-2.3, 0.7], [-0.4, 0.6]]
    fignums = [4, 7, 8]
    pairs = [[0,1], [0,2], [1,2]]
    plt.ioff()
    pp = PdfPages(os.path.join(working_dir,
                               "mcmc_results_{0}.pdf".format(modelname)))
    plt.figure(1, figsize=(9,6.5))
    plt.minorticks_on()
    table_summary, table_results = [], []
    sndata = dict(np.loadtxt("ppxf_results.dat", usecols=(0,10), dtype=str))
    for i, d in enumerate(dists):
        weights = np.ones_like(d.data)/len(d.data)
        ax = plt.subplot(3,3,(4*i)+1)
        plt.tick_params(labelsize=10)
        N, bins, patches = plt.hist(d.data, color="w",
                                    ec="w", bins=30, range=tuple(lims[i]),
                                    normed=True)
        fracs = N.astype(float)/N.max()
        norm = Normalize(-.2* fracs.max(), 1.5 * fracs.max())
        for thisfrac, thispatch in zip(fracs, patches):
            color = cm.gray_r(norm(thisfrac))
            thispatch.set_facecolor(color)
        x = np.linspace(d.data.min(), d.data.max(), 100)
        tot = np.zeros_like(x)
        # for m,w,c in zip(d.gmm.best.means_, d.gmm.best.weights_,
        #                  d.gmm.best.covars_):
        #     y = w * normpdf(x, m, np.sqrt(c))[0]
        #     ax.plot(x, y, "--b")
        #     tot += y
        # ax.plot(x,tot, "-b", lw=2)
        # pdf = np.exp(logprob)
        # pdf_individual = responsibilities * pdf[:, np.newaxis]
        # print pdf_individual
        ylim = ax.get_ylim()
        plt.plot(x, d.best.pdf(x), "-r", label="AD = {0:.1f}".format(
            d.best.ad), lw=2.5, alpha=0.7)
        ax.set_ylim(ylim)
        # plt.legend(loc=2, prop={'size':8})
        plt.axvline(d.best.MAPP, c="r", ls="--")
        plt.tick_params(labelright=True, labelleft=False, labelsize=10)
        plt.xlim(d.lims)
        if i < 2:
            plt.setp(ax.get_xticklabels(), visible=False)
        else:
            plt.xlabel(r"[$\mathregular{\alpha}$ / Fe]")
        plt.minorticks_on()
        summary.append([d.best.MAPP, d.uerr, d.lerr])
        for ss in [d.MAPP, d.MAPPmin, d.MAPPmax, d.best.ad]:
            log.append(r"{0:10s}".format(r"{0:.5f}".format(ss)))
    logfile = os.path.join(working_dir, folder,
                           "summary.txt".format(modelname))
    with open(logfile, "w") as f:
        f.write("{0:28s}{1:10s}{2:10s}{3:10s}{6:10s}{4:10s}{2:10s}{3:10s}{6:10s}{5:10s}"
            "{2:10s}{3:10s}{6:10s}\n".format("#Spectra", "Log AGE", "LOWER",
            "UPPER", "[Z/H]", "[E/Fe]", "AD test"))
        f.write("".join(log))
    ax = plt.subplot(3,3,4)
    hist2D(ages, metal, ax)
    plt.setp(ax.get_xticklabels(), visible=False)
    plt.ylabel("[Z/H]")

    ax = plt.subplot(3,3,7)
    hist2D(ages, alpha, ax)
    plt.ylabel(r"[$\mathregular{\alpha}$ / Fe]")
    plt.xlabel("log Age (Gyr)")
    ax = plt.subplot(3,3,8)
    plt.xlabel("[Z/H]")
    hist2D(metal, alpha, ax)
    # Annotations
    plt.annotate(r"Spectrum: {0}    S/N={1:.1f}".format(name.upper(), sn),
                 xy=(.7,.91),
                 xycoords="figure fraction", ha="center", size=20)
    xys = [(.7,.84), (.7,.77), (.7,.70)]
    line = r"{0:28s}".format(spec)
    for j, par in enumerate([r"Log Age", r"[Z/H]", r"[$\alpha$/Fe]"]):
        text = r"{0}={1[0]:.2f}$^{{+{1[1]:.2f}}}_"" \
               ""{{-{1[2]:.2f}}}$ dex".format(par, summary[j])
        plt.annotate(text, xy=xys[j], xycoords="figure fraction",
                     ha="center", size=20)
        line += "{0[1]:.5f}"
    plt.tight_layout(pad=0.2)
    # plt.pause(0.001)
    # plt.show(block=True)
    pp.savefig()
    plt.savefig(os.path.join(working_dir,
                "logs/mcmc_{0}_{1}.png".format(name, modelname)), dpi=100)
    plt.clf()
    pp.close()
Esempio n. 12
0
 weights = np.ones_like(d.data) / len(d.data)
 ax = plt.subplot(3, 3, (4 * i) + 1)
 # plt.tick_params(labelsize=10)
 N, bins, patches = plt.hist(d.data,
                             color="b",
                             ec="k",
                             bins=30,
                             range=tuple(lims[i]),
                             normed=True,
                             edgecolor="k",
                             histtype='bar',
                             linewidth=1.)
 fracs = N.astype(float) / N.max()
 norm = Normalize(-.2 * fracs.max(), 1.5 * fracs.max())
 for thisfrac, thispatch in zip(fracs, patches):
     color = cm.gray_r(norm(thisfrac))
     thispatch.set_facecolor(color)
     thispatch.set_edgecolor("w")
 x = np.linspace(d.data.min(), d.data.max(), 100)
 tot = np.zeros_like(x)
 # for m,w,c in zip(d.gmm.best.means_, d.gmm.best.weights_,
 #                  d.gmm.best.covars_):
 #     y = w * normpdf(x, m, np.sqrt(c))[0]
 #     ax.plot(x, y, "--b")
 #     tot += y
 # ax.plot(x,tot, "-b", lw=2)
 # pdf = np.exp(logprob)
 # pdf_individual = responsibilities * pdf[:, np.newaxis]
 # print pdf_individual
 ylim = ax.get_ylim()
 plt.plot(x,