def DrawDigit(A, label=''):
    """ Draw single digit as a greyscale matrix"""
    fig = plt.figure(figsize=(6, 6))
    # Uso la colormap 'gray' per avere la schacchiera in bianco&nero
    img = plt.imshow(A, cmap='gray_r')
    plt.xlabel(label)
    plt.show()
Esempio n. 2
0
                                         addComputationIndex=True,
                                         useMultiProcessing=True,
                                         showProgress=True,
                                         )

    print("--- %s seconds ---" % (time.time() - start_time))

    from mpl_toolkits.mplot3d import Axes3D  # noqa: F401 unused import
    import matplotlib.pyplot as plt
    #from matplotlib import cm
    #from matplotlib.ticker import LinearLocator, FormatStrFormatter
    import numpy as np
    colorMap = plt.cm.get_cmap('jet') #finite element colors
    
    plt.close('all')
    fig = plt.figure()
    ax = fig.gca(projection='3d')
    
    #reshape output of parametervariation to fit plot_surface
    X = np.array(pDict['mass']).reshape((n,n))
    Y = np.array(pDict['spring']).reshape((n,n))
    Z = np.array(values).reshape((n,n))

    surf = ax.plot_surface(X, Y, Z,
                           cmap=colorMap, linewidth=2, 
                           antialiased=True, 
                           shade = True)
    plt.colorbar(surf, shrink=0.5, aspect=5)
    plt.tight_layout()

    #++++++++++++++++++++++++++++++++++++++++++++++++++
]

# Instantiate a Gaussian Process model
gp = GaussianProcessRegressor(kernel=kernel,
                              alpha=dy**2,
                              n_restarts_optimizer=10)

# Fit to data using Maximum Likelihood Estimation of the parameters
gp.fit(X, y)

# Make the prediction on the meshed x-axis (ask for MSE as well)
y_pred, sigma = gp.predict(x, return_std=True)

# Plot the function, the prediction and the 95% confidence interval based on
# the MSE
plt.figure()
plt.errorbar(X.ravel(), y, dy, fmt='r.', markersize=10, label=u'Observations')
plt.plot(x, y_pred, 'b-', label=u'Prediction')
plt.fill(np.concatenate([x, x[::-1]]),
         np.concatenate(
             [y_pred - 1.9600 * sigma, (y_pred + 1.9600 * sigma)[::-1]]),
         alpha=.5,
         fc='b',
         ec='None',
         label='95% confidence interval')
plt.xlabel('$x$')
plt.ylabel('$f(x)$')
plt.ylim(-10, 20)
plt.legend(loc='upper left')

plt.show()
Esempio n. 4
0
from mpl_toolkits.mplot3d import axes3d
import matplotlib.plt as plt
import numpy as np

fig = plt.figure(5)
ax = fig.gca(projection='3d')

# axes range
ax.set_xlim3d(-1, 1)
ax.set_ylim3d(-1, 1)
ax.set_zlim3d(-1, 1)

# axes labels
ax.set_xlabel('x')
ax.set_ylabel('y')
ax.set_zlabel('z')


# normalizing a matrix
def normalize(A):
    return A / np.linalg.norm(A)


# the vectors from the diagram
V = -normalize(np.array([1.0**0.5, 0.0**0.5, -1.0**0.5]))
L = np.array([0.5**0.5, 0.5**0.5, 0.0**0.5])
N = np.array([0.0**0.5, 0.5**0.5, 0.0**0.5])
R = np.array([-0.5**0.5, 0.0**0.5, 0.5**0.5])
#R = normalize(2*np.dot(N,L)*N-L)

vectors = [