Esempio n. 1
0
def detect_edges(im, detection_threshold=0.6, do_dilation=False, overlay=True):
    edges = (pylab.absolute(image_derivative(im, 'x', False)) > detection_threshold) | \
            (pylab.absolute(image_derivative(im, 'y', False)) > detection_threshold)
    if do_dilation:
        edges = ndimage.binary_dilation(edges)
    if overlay:
        # overlay edges in a color
        im2 = nxmx3(im)
        im2[edges] = [1, .2, .2]
        edges = im2
    return edges
Esempio n. 2
0
 def _power(self):
     if not self._stft():
         return False
     fp = self._check_feature_params()
     self.POWER = (P.absolute(self.STFT)**2).sum(0)
     self._have_power = True
     if self.verbosity:
         print("Extracted POWER")
     self.X = self.POWER
     return True
Esempio n. 3
0
    def rank_by_distance_bhatt(self, qkeys, ikeys, rkeys, dists):
        """
        ::

            Reduce timbre-channel distances to ranks list by ground-truth key indices
            Bhattacharyya distance on timbre-channel probabilities and Kullback distances
        """
        # timbre-channel search using pre-computed distances
        ranks_list = []
        t_keys, t_lens = self.get_adb_lists(0)
        rdists = pylab.ones(len(t_keys)) * float('inf')
        qk = self._get_probs_tc(qkeys)
        for i in range(len(ikeys[0])):  # number of include keys
            ikey = []
            dk = pylab.zeros(self.timbre_channels)
            for t_chan in range(self.timbre_channels):  # timbre channels
                ikey.append(ikeys[t_chan][i])
                try:
                    # find dist of key i for query
                    i_idx = rkeys[t_chan].index(
                        ikey[t_chan])  # dataset include-key match
                    # the reduced distance function in include_keys order
                    # distance is Bhattacharyya distance on probs and dists
                    dk[t_chan] = dists[t_chan][i_idx]
                except:
                    print("Key not found in result list: ", ikey, "for query:",
                          qkeys[t_chan])
                    raise error.BregmanError()
            rk = self._get_probs_tc(ikey)
            a_idx = t_keys.index(ikey[0])  # audiodb include-key index
            rdists[a_idx] = distance.bhatt(
                pylab.sqrt(pylab.absolute(dk)),
                pylab.sqrt(pylab.absolute(qk * rk)))
        #search for the index of the relevant keys
        rdists = pylab.absolute(rdists)
        sort_idx = pylab.argsort(rdists)  # Sort fields into database order
        for r in self.ground_truth:  # relevant keys
            ranks_list.append(pylab.where(
                sort_idx == r)[0][0])  # Rank of the relevant key
        return ranks_list, rdists
Esempio n. 4
0
    def _cqft_intensified(self):
        """
        ::

            Constant-Q Fourier transform using only max abs(STFT) value in each band
        """
        if not self._have_stft:
            if not self._stft():
                return False
        self._make_log_freq_map()
        r, b = self.Q.shape
        b, c = self.STFT.shape
        self.CQFT = P.zeros((r, c))
        for i in P.arange(r):
            for j in P.arange(c):
                self.CQFT[i, j] = (self.Q[i, :] *
                                   P.absolute(self.STFT[:, j])).max()
        self._have_cqft = True
        self._is_intensified = True
        self.inverse = self.icqft
        self.X = self.CQFT
        return True
Esempio n. 5
0
    def _cqft(self):
        """
        ::

            Constant-Q Fourier transform.
        """

        if not self._power():
            return False
        fp = self._check_feature_params()
        if self.intensify:
            self._cqft_intensified()
        else:
            self._make_log_freq_map()
            self.CQFT = P.sqrt(
                P.array(P.mat(self.Q) * P.mat(P.absolute(self.STFT)**2)))
            self._is_intensified = False
        self._have_cqft = True
        if self.verbosity:
            print("Extracted CQFT: intensified=%d" % self._is_intensified)
        self.inverse = self.icqft
        self.X = self.CQFT
        return True
Esempio n. 6
0
    def rank_by_distance_avg(self, qkeys, ikeys, rkeys, dists):
        """
        ::

            Reduce timbre-channel distances to ranks list by ground-truth key indices
            Kullback distances
        """
        # timbre-channel search using pre-computed distances
        ranks_list = []
        t_keys, t_lens = self.get_adb_lists(0)
        rdists = pylab.ones(len(t_keys)) * float('inf')
        for t_chan in range(self.timbre_channels):  # timbre channels
            t_keys, t_lens = self.get_adb_lists(t_chan)
            for i, ikey in enumerate(ikeys[t_chan]):  # include keys, results
                try:
                    # find dist of key i for query
                    i_idx = rkeys[t_chan].index(
                        ikey)  # lower_bounded include-key index
                    a_idx = t_keys.index(ikey)  # audiodb include-key index
                    # the reduced distance function in include_keys order
                    # distance is the sum for now
                    if t_chan:
                        rdists[a_idx] += dists[t_chan][i_idx]
                    else:
                        rdists[a_idx] = dists[t_chan][i_idx]
                except:
                    print("Key not found in result list: ", ikey, "for query:",
                          qkeys[t_chan])
                    raise error.BregmanError()
        #search for the index of the relevant keys
        rdists = pylab.absolute(rdists)
        sort_idx = pylab.argsort(rdists)  # Sort fields into database order
        for r in self.ground_truth:  # relevant keys
            ranks_list.append(pylab.where(
                sort_idx == r)[0][0])  # Rank of the relevant key
        return ranks_list, rdists
Esempio n. 7
0
    def feature_plot(self,
                     feature=None,
                     normalize=False,
                     dbscale=False,
                     norm=False,
                     interp='nearest',
                     labels=True,
                     nofig=False,
                     **kwargs):
        """
        ::

          Plot the given feature, default is self.feature,
           returns an error if feature not extracted

          Inputs:
           feature   - the feature to plot self.feature
                        features are extracted in the following hierarchy:
                           stft->cqft->mfcc->[lcqft,hcqft]->chroma,
                        if a later feature was extracted, then an earlier feature can be plotted
           normalize - column-wise normalization ['alse]
           dbscale   - transform linear power to decibels: 20*log10(X) [False]
           norm      - make columns unit norm [False]
           interp    - how to interpolate values in the plot ['nearest']
           labels    - whether to plot labels
           nofig     - whether to make new figure
           **kwargs  - keyword arguments to imshow or plot
        """
        feature = self._check_feature_params(
        )['feature'] if feature is None else feature
        # check plots
        if feature == 'stft':
            if not self._have_stft:
                print("Error: must extract STFT first")
            else:
                feature_plot(P.absolute(self.STFT),
                             normalize,
                             dbscale,
                             norm,
                             title_string="STFT",
                             interp=interp,
                             nofig=nofig,
                             **kwargs)
                if labels:
                    self._feature_plot_xticks(
                        float(self.nhop) / float(self.sample_rate))
                    self._feature_plot_yticks(
                        float(self.sample_rate) / (self.nfft))
                    P.xlabel('Time (secs)')
                    P.ylabel('Frequency (Hz)')
        elif feature == 'power':
            if not self._have_power:
                print("Error: must extract POWER first")
            else:
                if not nofig: P.figure()
                P.plot(feature_scale(self.POWER, normalize, dbscale) / 20.0)
                if labels:
                    self._feature_plot_xticks(
                        float(self.nhop) / float(self.sample_rate))
                    P.title("Power")
                    P.xlabel("Time (s)")
                    P.ylabel("Power (dB)")
        elif feature == 'cqft':
            if not self._have_cqft:
                print("Error: must extract CQFT first")
            else:
                feature_plot(self.CQFT,
                             normalize,
                             dbscale,
                             norm,
                             title_string="CQFT",
                             interp=interp,
                             nofig=nofig,
                             **kwargs)
                if labels:
                    self._feature_plot_xticks(
                        float(self.nhop) / float(self.sample_rate))
                    #self._feature_plot_yticks(1.)
                    P.yticks(P.arange(0, self._cqtN, self.nbpo),
                             (self.lo *
                              2**(P.arange(0, self._cqtN, self.nbpo) /
                                  self.nbpo)).round(1))
                    P.xlabel('Time (secs)')
                    P.ylabel('Frequency (Hz)')
        elif feature == 'mfcc':
            if not self._have_mfcc:
                print("Error: must extract MFCC first")
            else:
                fp = self._check_feature_params()
                X = self.MFCC[self.lcoef:self.lcoef + self.ncoef, :]
                feature_plot(X,
                             normalize,
                             dbscale,
                             norm,
                             title_string="MFCC",
                             interp=interp,
                             nofig=nofig,
                             **kwargs)
                if labels:
                    self._feature_plot_xticks(
                        float(self.nhop) / float(self.sample_rate))
                    P.xlabel('Time (secs)')
                    P.ylabel('Cepstral coeffient')
        elif feature == 'lcqft':
            if not self._have_lcqft:
                print("Error: must extract LCQFT first")
            else:
                feature_plot(self.LCQFT,
                             normalize,
                             dbscale,
                             norm,
                             title_string="LCQFT",
                             interp=interp,
                             nofig=nofig,
                             **kwargs)
                if labels:
                    self._feature_plot_xticks(
                        float(self.nhop) / float(self.sample_rate))
                    P.yticks(P.arange(0, self._cqtN, self.nbpo),
                             (self.lo *
                              2**(P.arange(0, self._cqtN, self.nbpo) /
                                  self.nbpo)).round(1))
        elif feature == 'hcqft':
            if not self._have_hcqft:
                print("Error: must extract HCQFT first")
            else:
                feature_plot(self.HCQFT,
                             normalize,
                             dbscale,
                             norm,
                             title_string="HCQFT",
                             interp=interp,
                             nofig=nofig,
                             **kwargs)
                if labels:
                    self._feature_plot_xticks(
                        float(self.nhop) / float(self.sample_rate))
                    P.yticks(P.arange(0, self._cqtN, self.nbpo),
                             (self.lo *
                              2**(P.arange(0, self._cqtN, self.nbpo) /
                                  self.nbpo)).round(1))
                    P.xlabel('Time (secs)')
                    P.ylabel('Frequency (Hz)')
        elif feature == 'chroma' or feature == 'hchroma':
            if not self._have_chroma:
                print("Error: must extract CHROMA first")
            else:
                feature_plot(self.CHROMA,
                             normalize,
                             dbscale,
                             norm,
                             title_string="CHROMA",
                             interp=interp,
                             nofig=nofig,
                             **kwargs)
                if labels:
                    self._feature_plot_xticks(
                        float(self.nhop) / float(self.sample_rate))
                    P.yticks(P.arange(0, self.nbpo, self.nbpo / 12.), [
                        'C', 'C#', 'D', 'Eb', 'E', 'F', 'F#', 'G', 'G#', 'A',
                        'Bb', 'B'
                    ])
                    P.xlabel('Time (secs)')
                    P.ylabel('Pitch Class')
        else:
            print("Unrecognized feature, skipping plot: ", feature)
Esempio n. 8
0
def __get_data(caltable, xaxis, yaxis, iteration, poln, field, antenna, spw,
               timerange):
    antenna_list = __get_antennas(caltable)
    fields_list = __get_table(caltable, 'FIELD')
    spw_list = __get_table(caltable, 'SPECTRAL_WINDOW')
    caltype = __get_caltype(caltable)

    tb.open(caltable)
    timecol = tb.getcol('TIME')
    antcol = tb.getcol('ANTENNA1')
    spwcol = tb.getcol('SPECTRAL_WINDOW_ID')
    fieldcol = tb.getcol('FIELD_ID')
    column = 'CPARAM' if "CPARAM" in tb.colnames() else "FPARAM"
    paramcol = tb.getcol(column)
    tb.close()

    # Select data; would for loop + numba be preferred for large tables?
    rows = pl.where(pl.isin(fieldcol, field))[0]
    rows = rows[pl.where(pl.isin(spwcol[rows], spw))[0]]
    rows = rows[pl.where(pl.isin(antcol[rows], antenna))[0]]
    rows = rows[pl.where(
        pl.logical_and(timecol[rows] >= timerange[0],
                       timecol[rows] <= timerange[1]))[0]]

    # Key and Label templates for each subfigure, iteration determines the number of subfigures
    # iteratation = field, antenna, or spw
    figtempl = ""
    fighdrs = []
    iterset = set(it.upper() for it in iteration.split(','))
    #print('iteration="{}", len(iterset)="{}", iterset="{}"'.format(iteration, len(iterset), iterset))
    for it in iterset:
        if it == "":
            continue
        elif it == "ANTENNA":
            figtempl += "A{1}"
            fighdrs.append("Antenna = {1}")
        elif it == "SPW":
            figtempl += "S{2}"
            fighdrs.append("Spw = {2}")
        elif it == "FIELD":
            figtempl += "F{3}"
            fighdrs.append("Field = {3}")
        else:
            print("Error, invalid iteration parameter:", it)
            raise ValueError()
    fighdrtempl = ", ".join(fighdrs)

    # Label and key template for each plot
    #plotcols = {"TIME", "ANTENNA", "SPW", "FIELD"} - iterset
    plotcols = {"ANTENNA", "SPW", "FIELD"} - iterset
    if "TIME" in (xaxis, yaxis):
        plotcols -= {"TIME"}
    if "CHANNEL" in (xaxis, yaxis):
        plotcols -= {"SPW"}
    if "ANTENNA" in (xaxis, yaxis):
        plotcols -= {"ANTENNA"}
    plottempl = ""
    plothdrs = []
    for pc in plotcols:
        if pc == "TIME":
            plottempl += "T{0}"
            plothdrs.append("{0}")
        elif pc == "ANTENNA":
            plottempl += "A{1}"
            plothdrs.append("{1}")
        elif pc == "SPW":
            plottempl += "S{2}"
            plothdrs.append("{2}")
        elif pc == "FIELD":
            plottempl += "F{3}"
            plothdrs.append("{3}")
    plothdrtempl = ", ".join(plothdrs)

    #field,spw,antenna,pol,time / val
    plotdata = {}
    for row in rows:
        r = (timecol[row], antcol[row], spwcol[row], fieldcol[row])
        rlabel = (__casa2datetime(r[0]), antenna_list[r[1]], r[2],
                  fields_list[r[3]]['NAME'])
        figkey = figtempl.format(*r)
        try:
            f = plotdata[figkey]
        except KeyError:
            label = fighdrtempl.format(*rlabel)
            f = {"label": label}
            plotdata[figkey] = f
        plotkey = plottempl.format(*r)
        try:
            p = f[plotkey]
        except KeyError:
            label = plothdrtempl.format(*rlabel)
            p = ([], [], label)  # X, Y, Label
            f[plotkey] = p
        #print('figkey = \"{}\" ; plotkey = {}; label = {}'.format(figkey, plotkey, label))
        for pol in poln:
            for i, ax in enumerate((xaxis, yaxis)):
                # Should be possible to do more efficient
                if ax == "TIME":
                    p[i].append(rlabel[0])
                elif ax == "ANTENNA":
                    p[i].append(r[1])
                elif ax == "CHAN":
                    nchan = spw_list[r[2]]['NUM_CHAN']
                    p[i].extend([ch for ch in range(nchan)])
                elif ax == "FREQ":
                    p[i].extend(spw_list[r[2]]['CHAN_FREQ'])
                elif ax == "DELAY":
                    if caltype == "FRINGE":
                        p[i].append(paramcol[pol * 4 + 1, 0, row])
                    else:
                        p[i].append(paramcol[pol * 4, 0, row])
                elif ax == "RATE":
                    if caltype == "FRINGE":
                        p[i].append(paramcol[pol * 4 + 2, 0, row])
                    else:
                        print(
                            "Error: Rate is not available in calibration table"
                        )
                        raise ValueError()
                elif ax == "DISP":
                    if caltype == "FRINGE":
                        p[i].append(paramcol[pol * 4 + 3, 0, row])
                    else:
                        print(
                            "Error: Dispersive delay is not available in calibration table"
                        )
                        raise ValueError()
                elif ax == "AMP":
                    p[i].extend(pl.absolute(paramcol[pol, :, row]))
                elif ax == "PHASE":
                    if caltype == "FRINGE":
                        v = paramcol[pol * 4, :, row]
                    else:
                        v = paramcol[pol, :, row]
                    p[i].extend(
                        pl.arctan2(pl.imag(v), pl.real(v)) * 180 / pl.pi)
                elif ax == "TSYS":
                    if caltype == "EVLASWPOW":
                        p[i].append(paramcol[pol * 4 + 1], 0, row)
                    else:
                        p[i].append(paramcol[pol, 0, row])
                else:
                    #print(len(spw_list))
                    #print(spw_list)
                    #print(paramcol.shape)
                    print("Error: unknown axis ", ax)
                    raise ValueError()

    # Convert data to sorted numpy arrays
    for figkey, fig in plotdata.items():
        for plotkey, data in fig.items():
            if (plotkey == "label"):
                continue
            x = pl.array(data[0])
            y = pl.array(data[1])
            srt = x.argsort()
            fig[plotkey] = [x[srt], y[srt], data[2]]
    return plotdata