Esempio n. 1
0
def AND(C, B):

    # Local Variables: UB0, varargout, numRankSigma, nout, k, Ux, UC0, Wt, tol, C, B, numRankB, numRankC, UtC, Vx, Wgk, W, Sigma, UtB, dim, Sx, CandB, SC, SB, dSB, dSC, UC, UB
    # Function calls: AND, eye, diag, svd, nargout, inv, pinv, max, sum, size
    dim = matcompat.size(C, 1.0)
    tol = 1e-14
    [UC, SC, UtC] = plt.svd(C)
    [UB, SB, UtB] = plt.svd(B)
    dSC = np.diag(SC)
    dSB = np.diag(SB)
    numRankC = np.sum(np.dot(1.0, dSC > tol))
    numRankB = np.sum(np.dot(1.0, dSB > tol))
    UC0 = UC[:, int(numRankC + 1.0) - 1 :]
    UB0 = UB[:, int(numRankB + 1.0) - 1 :]
    [W, Sigma, Wt] = plt.svd((np.dot(UC0, UC0.conj().T) + np.dot(UB0, UB0.conj().T)))
    numRankSigma = np.sum(np.dot(1.0, np.diag(Sigma) > tol))
    Wgk = W[:, int(numRankSigma + 1.0) - 1 :]
    CandB = np.dot(
        np.dot(
            Wgk, linalg.inv(np.dot(np.dot(Wgk.conj().T, linalg.pinv(C, tol) + linalg.pinv(B, tol) - np.eye(dim)), Wgk))
        ),
        Wgk.conj().T,
    )
    nout = matcompat.max(nargout, 1.0) - 1.0
    if nout > 0.0:
        [Ux, Sx, Vx] = plt.svd(CandB)
        for k in np.arange(1.0, (nout) + 1):
            if k == 1.0:
                varargout[int(k) - 1] = cellarray(np.hstack((Ux)))
            elif k == 2.0:
                varargout[int(k) - 1] = cellarray(np.hstack((Sx)))

    return [CandB, varargout]
Esempio n. 2
0
def AND(C, B):

    # Local Variables: UB0, varargout, numRankSigma, nout, k, Ux, UC0, Wt, tol, C, B, numRankB, numRankC, UtC, Vx, Wgk, W, Sigma, UtB, dim, Sx, CandB, SC, SB, dSB, dSC, UC, UB
    # Function calls: AND, eye, diag, svd, nargout, inv, pinv, max, sum, size
    dim = matcompat.size(C, 1.)
    tol = 1e-14
    [UC, SC, UtC] = plt.svd(C)
    [UB, SB, UtB] = plt.svd(B)
    dSC = np.diag(SC)
    dSB = np.diag(SB)
    numRankC = np.sum(np.dot(1.0, dSC > tol))
    numRankB = np.sum(np.dot(1.0, dSB > tol))
    UC0 = UC[:, int(numRankC + 1.) - 1:]
    UB0 = UB[:, int(numRankB + 1.) - 1:]
    [W, Sigma, Wt] = plt.svd((np.dot(UC0,
                                     UC0.conj().T) + np.dot(UB0,
                                                            UB0.conj().T)))
    numRankSigma = np.sum(np.dot(1.0, np.diag(Sigma) > tol))
    Wgk = W[:, int(numRankSigma + 1.) - 1:]
    CandB = np.dot(
        np.dot(
            Wgk,
            linalg.inv(
                np.dot(
                    np.dot(
                        Wgk.conj().T,
                        linalg.pinv(C, tol) + linalg.pinv(B, tol) -
                        np.eye(dim)), Wgk))),
        Wgk.conj().T)
    nout = matcompat.max(nargout, 1.) - 1.
    if nout > 0.:
        [Ux, Sx, Vx] = plt.svd(CandB)
        for k in np.arange(1., (nout) + 1):
            if k == 1.:
                varargout[int(k) - 1] = cellarray(np.hstack((Ux)))
            elif k == 2.:
                varargout[int(k) - 1] = cellarray(np.hstack((Sx)))

    return [CandB, varargout]
        pPL.cell[0,int(p)-1] = pCollector[0,0:signalPlotLength]
        R = matdiv(np.dot(xOldCollector, xOldCollector.conj().T), learnLength+1.)
        Cnative = np.dot(R, linalg.inv((R+I)))
        nativeCs.cell[0,int(p)-1] = Cnative
        startxs[:,int(p)-1] = x
        #% compute D increment
        Dtargs = np.dot(Win, pCollector)
        F = NOT(Call)
        Dargs = xOldCollector
        Dinc = matdiv(np.dot(np.dot(linalg.pinv((matdiv(np.dot(Dargs, Dargs.conj().T), learnLength)+np.dot(matixpower(aperture, -2.), I))), Dargs), Dtargs.conj().T), learnLength).conj().T
        #% update D and Call
        D = D+Dinc
        Cap = PHI(Cnative, aperture)
        Call = OR(Call, Cap)
        Calls.cell[0,int(p)-1] = Call
        [Ux, Sx, Vx] = plt.svd(Call)
        sizesCall[0,int(p)-1] = np.mean(np.diag(Sx))
        [Ux, Sx, Vx] = plt.svd(Cap)
        sizesCap[0,int(p)-1] = np.mean(np.diag(Sx))
        
elif learnType == 2.:
    #% extension exploiting redundancies
    patternCollectors = cell(1., Np)
    pPL = cell(1., Np)
    sizesCall = np.zeros(1., Np)
    sizesCap = np.zeros(1., Np)
    Calls = cell(1., Np)
    startxs = np.zeros(Netsize, Np)
    Call = np.zeros(Netsize, Netsize)
    D = np.zeros(Netsize, Netsize)
    nativeCs = cell(1., Np)
Esempio n. 4
0
    for n in np.arange(1., (washoutLength + learnLength) + 1):
        u = patt[int(n) - 1]
        #% pattern input
        xOld = x
        x = np.tanh((np.dot(Wstar, x) + np.dot(Win, u) + Wbias))
        if n > washoutLength:
            xCollector[:, int((n - washoutLength)) - 1] = x
            xOldCollector[:, int((n - washoutLength)) - 1] = xOld
            pCollector[0, int((n - washoutLength)) - 1] = u

    xCollectorCentered = xCollector - matcompat.repmat(np.mean(xCollector, 2.),
                                                       1., learnLength)
    xCollectorsCentered.cell[0, int(p) - 1] = xCollectorCentered
    xCollectors.cell[0, int(p) - 1] = xCollector
    R = matdiv(np.dot(xCollector, xCollector.conj().T), learnLength)
    [Ux, Sx, Vx] = plt.svd(R)
    SRCollectors.cell[0, int(p) - 1] = Sx
    URCollectors.cell[0, int(p) - 1] = Ux
    patternRs.cell[int(p) - 1] = R
    startXs[:, int(p) - 1] = x
    train_xPL.cell[0, int(p) - 1] = xCollector[0:5., 0:signalPlotLength]
    train_pPL.cell[0, int(p) - 1] = pCollector[0, 0:signalPlotLength]
    patternCollectors.cell[0, int(p) - 1] = pCollector
    allTrainArgs[:,
                 int(np.dot(p - 1., learnLength) + 1.) -
                 1:np.dot(p, learnLength)] = xCollector
    allTrainOldArgs[:,
                    int(np.dot(p - 1., learnLength) + 1.) -
                    1:np.dot(p, learnLength)] = xOldCollector
    allTrainOuts[0,
                 int(np.dot(p - 1., learnLength) + 1.) -
        u = patt[int(n)-1]
        #% pattern input
        xOld = x
        x = np.tanh((np.dot(Wstar, x)+np.dot(Win, u)+Wbias))
        if n > washoutLength:
            xCollector[:,int((n-washoutLength))-1] = x
            xOldCollector[:,int((n-washoutLength))-1] = xOld
            pCollector[0,int((n-washoutLength))-1] = u
        
        
        
    xCollectorCentered = xCollector-matcompat.repmat(np.mean(xCollector, 2.), 1., learnLength)
    xCollectorsCentered.cell[0,int(p)-1] = xCollectorCentered
    xCollectors.cell[0,int(p)-1] = xCollector
    R = matdiv(np.dot(xCollector, xCollector.conj().T), learnLength)
    [Ux, Sx, Vx] = plt.svd(R)
    SRCollectors.cell[0,int(p)-1] = Sx
    URCollectors.cell[0,int(p)-1] = Ux
    patternRs.cell[int(p)-1] = R
    startXs[:,int(p)-1] = x
    train_xPL.cell[0,int(p)-1] = xCollector[:,0:signalPlotLength]
    train_pPL.cell[0,int(p)-1] = pCollector[0,0:signalPlotLength]
    patternCollectors.cell[0,int(p)-1] = pCollector
    allTrainArgs[:,int(np.dot(p-1., learnLength)+1.)-1:np.dot(p, learnLength)] = xCollector
    allTrainOldArgs[:,int(np.dot(p-1., learnLength)+1.)-1:np.dot(p, learnLength)] = xOldCollector
    allTrainOuts[0,int(np.dot(p-1., learnLength)+1.)-1:np.dot(p, learnLength)] = pCollector
    allTrainTargs[:,int(np.dot(p-1., learnLength)+1.)-1:np.dot(p, learnLength)] = np.dot(Win, pCollector)
    
#%%% compute readout
Wout = np.dot(np.dot(linalg.inv((np.dot(allTrainArgs, allTrainArgs.conj().T)+np.dot(TychonovAlphaReadout, np.eye(Netsize)))), allTrainArgs), allTrainOuts.conj().T).conj().T
#% training error
        u = patt[int(n)-1]
        #% pattern input
        xOld = x
        x = np.tanh((np.dot(Wstar, x)+np.dot(Win, u)+Wbias))
        if n > washoutLength:
            xCollector[:,int((n-washoutLength))-1] = x
            xOldCollector[:,int((n-washoutLength))-1] = xOld
            pCollector[0,int((n-washoutLength))-1] = u
        
        
        
    xCollectorCentered = xCollector-matcompat.repmat(np.mean(xCollector, 2.), 1., learnLength)
    xCollectorsCentered.cell[0,int(p)-1] = xCollectorCentered
    xCollectors.cell[0,int(p)-1] = xCollector
    R = matdiv(np.dot(xCollector, xCollector.conj().T), learnLength)
    [Ux, Sx, Vx] = plt.svd(R)
    SRCollectors.cell[0,int(p)-1] = Sx
    URCollectors.cell[0,int(p)-1] = Ux
    patternRs.cell[int(p)-1] = R
    startXs[:,int(p)-1] = x
    train_xPL.cell[0,int(p)-1] = xCollector[:,0:signalPlotLength]
    train_pPL.cell[0,int(p)-1] = pCollector[0,0:signalPlotLength]
    patternCollectors.cell[0,int(p)-1] = pCollector
    allTrainArgs[:,int(np.dot(p-1., learnLength)+1.)-1:np.dot(p, learnLength)] = xCollector
    allTrainOldArgs[:,int(np.dot(p-1., learnLength)+1.)-1:np.dot(p, learnLength)] = xOldCollector
    allTrainOuts[0,int(np.dot(p-1., learnLength)+1.)-1:np.dot(p, learnLength)] = pCollector
    allTrainTargs[:,int(np.dot(p-1., learnLength)+1.)-1:np.dot(p, learnLength)] = np.dot(Win, pCollector)
    
#%%% compute readout
Wout = np.dot(np.dot(linalg.inv((np.dot(allTrainArgs, allTrainArgs.conj().T)+np.dot(TychonovAlphaReadout, np.eye(Netsize)))), allTrainArgs), allTrainOuts.conj().T).conj().T
#% training error
Esempio n. 7
0
    for n in np.arange(1., (washoutLength + learnLength) + 1):
        u = patt[int(n) - 1]
        #% pattern input
        xOld = x
        x = np.tanh((np.dot(Wstar, x) + np.dot(Win, u) + Wbias))
        if n > washoutLength:
            xCollector[:, int((n - washoutLength)) - 1] = x
            xOldCollector[:, int((n - washoutLength)) - 1] = xOld
            pCollector[0, int((n - washoutLength)) - 1] = u

    xCollectorCentered = xCollector - matcompat.repmat(np.mean(xCollector, 2.),
                                                       1., learnLength)
    xCollectorsCentered.cell[0, int(p) - 1] = xCollectorCentered
    xCollectors.cell[0, int(p) - 1] = xCollector
    R = matdiv(np.dot(xCollector, xCollector.conj().T), learnLength)
    [Ux, Sx, Vx] = plt.svd(R)
    SRCollectors.cell[0, int(p) - 1] = Sx
    URCollectors.cell[0, int(p) - 1] = Ux
    patternRs.cell[int(p) - 1] = R
    startXs[:, int(p) - 1] = x
    train_xPL.cell[0, int(p) - 1] = xCollector[0:5., 0:signalPlotLength]
    train_pPL.cell[0, int(p) - 1] = pCollector[0, 0:signalPlotLength]
    patternCollectors.cell[0, int(p) - 1] = pCollector
    allTrainArgs[:,
                 int(np.dot(p - 1., learnLength) + 1.) -
                 1:np.dot(p, learnLength)] = xCollector
    allTrainOldArgs[:,
                    int(np.dot(p - 1., learnLength) + 1.) -
                    1:np.dot(p, learnLength)] = xOldCollector
    allTrainOuts[0,
                 int(np.dot(p - 1., learnLength) + 1.) -
Esempio n. 8
0
            xOldCollector[:,int((n-washoutLength))-1] = xOld
            if p == 2. or p == 3.:
                #% the Lorenz and MG observers are rescaled to [0 1]
            #% the other two are already in that range
            pCollector[0,int((n-washoutLength))-1] = np.dot(0.5, u[0]+1.)
            else:
                pCollector[0,int((n-washoutLength))-1] = u[0]
                
            
        
        
        
    xCollectorCentered = xCollector-matcompat.repmat(np.mean(xCollector, 2.), 1., learnLength)
    xCollectorsCentered.cell[0,int(p)-1] = xCollectorCentered
    xCollectors.cell[0,int(p)-1] = xCollector
    [Ux, Sx, Vx] = plt.svd(matdiv(np.dot(xCollector, xCollector.conj().T), learnLength))
    startXs[:,int(p)-1] = x
    diagSx = np.diag(Sx)
    #%diagSx(diagSx < 1e-6,1) = zeros(sum(diagSx < 1e-6),1);
    R = np.dot(np.dot(Ux, np.diag(diagSx)), Ux.conj().T)
    patternRs.cell[int(p)-1] = R
    patternCollectors.cell[0,int(p)-1] = pCollector
    allTrainArgs[:,int(np.dot(p-1., learnLength)+1.)-1:np.dot(p, learnLength)] = xCollector
    allTrainOldArgs[:,int(np.dot(p-1., learnLength)+1.)-1:np.dot(p, learnLength)] = xOldCollector
    allTrainOuts[0,int(np.dot(p-1., learnLength)+1.)-1:np.dot(p, learnLength)] = pCollector
    
#%%% compute readout
Wout = np.dot(np.dot(linalg.inv((np.dot(allTrainArgs, allTrainArgs.conj().T)+np.dot(TychonovAlphaReadout, np.eye(Netsize)))), allTrainArgs), allTrainOuts.conj().T).conj().T
#% training error
NRMSE_readout = nrmse(np.dot(Wout, allTrainArgs), allTrainOuts)
np.disp(sprintf('NRMSE readout: %g', NRMSE_readout))
        u = patt[int(n)-1]
        #% pattern input
        xOld = x
        x = np.tanh((np.dot(Wstar, x)+np.dot(Win, u)+Wbias))
        if n > washoutLength:
            xCollector[:,int((n-washoutLength))-1] = x
            xOldCollector[:,int((n-washoutLength))-1] = xOld
            pCollector[0,int((n-washoutLength))-1] = u
        
        
        
    xCollectorCentered = xCollector-matcompat.repmat(np.mean(xCollector, 2.), 1., learnLength)
    xCollectorsCentered.cell[0,int(p)-1] = xCollectorCentered
    xCollectors.cell[0,int(p)-1] = xCollector
    R = matdiv(np.dot(xCollector, xCollector.conj().T), learnLength)
    [Ux, Sx, Vx] = plt.svd(R)
    SRCollectors.cell[0,int(p)-1] = Sx
    URCollectors.cell[0,int(p)-1] = Ux
    patternRs.cell[int(p)-1] = R
    startXs[:,int(p)-1] = x
    train_xPL.cell[0,int(p)-1] = xCollector[0:5.,0:signalPlotLength]
    train_pPL.cell[0,int(p)-1] = pCollector[0,0:signalPlotLength]
    patternCollectors.cell[0,int(p)-1] = pCollector
    allTrainArgs[:,int(np.dot(p-1., learnLength)+1.)-1:np.dot(p, learnLength)] = xCollector
    allTrainOldArgs[:,int(np.dot(p-1., learnLength)+1.)-1:np.dot(p, learnLength)] = xOldCollector
    allTrainOuts[0,int(np.dot(p-1., learnLength)+1.)-1:np.dot(p, learnLength)] = pCollector
    allTrainTargs[:,int(np.dot(p-1., learnLength)+1.)-1:np.dot(p, learnLength)] = np.dot(Win, pCollector)
    
#%%% compute readout
Wout = np.dot(np.dot(linalg.inv((np.dot(allTrainArgs, allTrainArgs.conj().T)+np.dot(TychonovAlphaReadout, np.eye(Netsize)))), allTrainArgs), allTrainOuts.conj().T).conj().T
#% training error
        u = patt[int(n)-1]
        #% pattern input
        xOld = x
        x = np.tanh((np.dot(Wstar, x)+np.dot(Win, u)+Wbias))
        if n > washoutLength:
            xCollector[:,int((n-washoutLength))-1] = x
            xOldCollector[:,int((n-washoutLength))-1] = xOld
            pCollector[0,int((n-washoutLength))-1] = u
        
        
        
    xCollectorCentered = xCollector-matcompat.repmat(np.mean(xCollector, 2.), 1., learnLength)
    xCollectorsCentered.cell[0,int(p)-1] = xCollectorCentered
    xCollectors.cell[0,int(p)-1] = xCollector
    R = matdiv(np.dot(xCollector, xCollector.conj().T), learnLength)
    [Ux, Sx, Vx] = plt.svd(R)
    SRCollectors.cell[0,int(p)-1] = Sx
    URCollectors.cell[0,int(p)-1] = Ux
    patternRs.cell[int(p)-1] = R
    startXs[:,int(p)-1] = x
    train_xPL.cell[0,int(p)-1] = xCollector[0:5.,0:signalPlotLength]
    train_pPL.cell[0,int(p)-1] = pCollector[0,0:signalPlotLength]
    patternCollectors.cell[0,int(p)-1] = pCollector
    allTrainArgs[:,int(np.dot(p-1., learnLength)+1.)-1:np.dot(p, learnLength)] = xCollector
    allTrainOldArgs[:,int(np.dot(p-1., learnLength)+1.)-1:np.dot(p, learnLength)] = xOldCollector
    allTrainOuts[0,int(np.dot(p-1., learnLength)+1.)-1:np.dot(p, learnLength)] = pCollector
    allTrainTargs[:,int(np.dot(p-1., learnLength)+1.)-1:np.dot(p, learnLength)] = np.dot(Win, pCollector)
    
#%%% compute readout
Wout = np.dot(np.dot(linalg.inv((np.dot(allTrainArgs, allTrainArgs.conj().T)+np.dot(TychonovAlphaReadout, np.eye(Netsize)))), allTrainArgs), allTrainOuts.conj().T).conj().T
#% training error