Esempio n. 1
0
 def plotBar(pos, cases, dt, color, title):
     """
     This plots based base on the time series data
     :param pos:
     :param cases:
     :param dt:
     :param color:
     :param title:
     :return:
     """
     labels = [val[1] for val in cases]
     labels2 = [
         "Test"
     ] + labels  # this is to overcome a bug in the bar function
     x = np.arange(len(labels))  # the label locations
     axs[pos].bar(x, [val[0] for val in cases],
                  color=color,
                  edgecolor='k')
     axs[pos].set_title("{} on {}".format(title, str(dt)), fontsize=15)
     axs[pos].xaxis.set_major_locator(plt.FixedLocator(x))
     axs[pos].xaxis.set_major_formatter(plt.FixedFormatter(labels))
     #axs[pos].set_xticklabels(labels2)
     axs[pos].grid(axis="y")
     plt.setp(axs[pos].xaxis.get_majorticklabels(),
              rotation=35,
              fontsize=12)
Esempio n. 2
0
def graph_flow_generator(total):
    ticket_dict = {}
    ticket_dict["Information"] = total[0]
    ticket_dict["Mineure"] = total[1]
    ticket_dict["Majeure"] = total[2]
    ticket_dict["Bloquante"] = total[3]
    ticket_dict["Autre"] = total[4]

    fig = plt.figure()
    ax = fig.add_subplot(111)

    frequencies = ticket_dict.values()
    names = ticket_dict.keys()

    x_coordinates = np.arange(len(ticket_dict))
    ax.bar(x_coordinates, frequencies, align='center')

    ax.xaxis.set_major_locator(plt.FixedLocator(x_coordinates))
    ax.xaxis.set_major_formatter(plt.FixedFormatter(names))

    plt.savefig("flow" + contract_id + ".svg")
    # plt.show()

    img_insert("Repartition des demandes", "flow" + contract_id + ".svg",
               "Repartition des demandes")
Esempio n. 3
0
def bar_plot(d, bars, outdir='.'):
    N = len(bars)
    ind = numpy.arange(N)
    width = 0.35
    plt.title("LCA of reads for contigs with alignment purity < 0.95", size='x-small')

    # add bars
    sum_values = sum(d.values())
    plt.bar(ind, [d[k] * 100 / sum_values for k in bars], width, color='red')
    # Final bar is not really visible, increase xlim
    xmin, xmax = plt.xlim()
    plt.xlim(xmin=xmin-1)
    plt.xlim(xmax=xmax+1)

    # axis setup
    labels = []
    for k in bars:
        labels.append('%s\n%d' % (k, d[k]))
    plt.xticks(ind + width / 2., bars, size='xx-small', rotation=17)
    tick_range = numpy.arange(0, 110, 10)
    plt.yticks(tick_range, size='xx-small')
    formatter = plt.FixedFormatter([str(x) for x in tick_range])
    plt.gca().yaxis.set_major_formatter(formatter)
    plt.gca().yaxis.grid(which='major')

    plt.savefig(outdir + "/plots/barplot.png")
    plt.close()
Esempio n. 4
0
def generate_histrogram_strings(buckets, title, x_label, y_label, output):
    fig = plt.figure()
    ax = fig.add_subplot(111)
    sorted_keys = sorted(buckets.keys(),
                         key=lambda item: int(''.join(x for x in item
                                                      if x.isdigit())))
    indexes = np.arange(0, len(sorted_keys))  # the x locations for the groups
    width = 0.1  # the width of the bars

    ax.set_yscale('log')
    ax.grid(zorder=0, axis="y")

    bars1 = ax.bar(indexes, [buckets.get(sorted_keys[i], 0) for i in indexes],
                   align='center',
                   color='blue')

    # axes and labels
    ax.set_ylim(0.5, max(buckets.values()) + 1)
    ax.set_xlabel(x_label)
    ax.set_ylabel(y_label)
    ax.set_title(title)

    ax.xaxis.set_major_locator(plt.FixedLocator(indexes))
    ax.xaxis.set_major_formatter(plt.FixedFormatter(sorted_keys))
    labels = ax.get_xticklabels()
    for tick in labels:
        tick.set_rotation(90)

    plt.tight_layout()

    fig.savefig(output)
Esempio n. 5
0
def plot_bar_graph_within(names, observered_data, result_data, title, fig,
                          sub_plot_index):
    """
    :param names: labels of x-axis
    :param observered_data: as variable name
    :param result_data: as variable name
    :param title: the title of the subplot
    :param fig: the fig object
    :param sub_plot_index: the index number is in order,
        such 221 means the generate a graph has 2 by 2 figure, which could have 4 subplots in it
        the 1 means the first subplot in the figure.
    :return: the fig object
    """
    # define the subplot
    ax = fig.add_subplot(sub_plot_index)

    x = np.arange(names.__len__()) * 2
    # set the value
    ax.bar(x, observered_data, align='center', color='red')
    ax.bar(x + 1, result_data, align='center', color='blue')

    # create the patch
    red_patch = mpatches.Patch(color='red', label='Observed Value')
    blue_patch = mpatches.Patch(color='blue', label='Simulated Value')

    # Set the label x-axis
    ax.xaxis.set_major_locator(plt.FixedLocator(x + 0.5))
    ax.xaxis.set_major_formatter(plt.FixedFormatter(names))
    ax.set_title(title)

    plt.legend(handles=[red_patch, blue_patch])

    return fig
def save_ability_power_statistics(statistics):
    fig = plt.figure()
    ax = fig.add_subplot(111)

    x = np.arange(len(statistics))

    plt.bar(x, [s[1] for s in statistics], width=0.8, align='center')

    ax.set_xlim(-0.5, len(statistics) + 0.5)
    ax.set_ylim(0, statistics[0][1])

    locator = plt.IndexLocator(1, 0.4)
    formatter = plt.FixedFormatter([s[0] for s in statistics])

    ax.xaxis.set_major_locator(locator)
    ax.xaxis.set_major_formatter(formatter)

    plt.setp(plt.getp(ax, 'xticklabels'),
             rotation=45,
             fontsize=8,
             horizontalalignment='right')

    ax.set_title('Wins per ability')

    plt.tight_layout()

    plt.savefig('/tmp/wins.png')
Esempio n. 7
0
def plot_bar_from_counter(counter, title, xlabel, ylabel, ax=None):
	""""
    This function creates a bar plot from a counter.

    :param counter: This is a counter object, a dictionary with the item as the key
     and the frequency as the value
    :param ax: an axis of matplotlib
    :return: the axis wit the object in it
    """
	
	if ax is None:
		fig = plt.figure()
		ax = fig.add_subplot(111)
	
	frequencies = counter.values()
	names = list(counter.keys())
	
	x_coordinates = np.arange(len(counter))
	ax.bar(x_coordinates, frequencies, align='center')
	
	ax.xaxis.set_major_locator(plt.FixedLocator(x_coordinates))
	ax.xaxis.set_major_formatter(plt.FixedFormatter(names))
	ax.xaxis.set_label_text(xlabel)
	ax.yaxis.set_label_text(ylabel)
	ax.set_title(title)
	plt.autoscale(enable=True, axis='x')
	
	DefaultSize = fig.get_size_inches()
	fig.set_size_inches((DefaultSize[0] * 5, DefaultSize[1] * 2.5))
	mkdir_p(IMG_URL)
	plt.savefig(IMG_URL + 'GIST Data Histogram.png')
	plt.close()
	im = crop_image(IMG_URL + 'GIST Data Histogram.png')
	return ax
def save_ability_wins_distribution(statistics, ability_wins):

    fig = plt.figure()
    ax = fig.add_subplot(111)

    keys, wins = list(zip(*statistics))  # pylint: disable=W0612

    data = [ability_wins[key] for key in keys]
    ax.boxplot(data)  #, positions=[i for i in xrange(len(keys))])

    ax.set_xlim(0.5, len(statistics) + 0.5)
    ax.set_ylim(0, TEST_BATTLES_NUMBER * len(HERO_LEVELS))

    locator = plt.IndexLocator(1, 0.5)
    formatter = plt.FixedFormatter([s[0] for s in statistics])

    ax.xaxis.set_major_locator(locator)
    ax.xaxis.set_major_formatter(formatter)
    plt.setp(plt.getp(ax, 'xticklabels'),
             rotation=45,
             fontsize=8,
             horizontalalignment='right')

    ax.set_title('wins destribution')

    plt.tight_layout()

    plt.savefig('/tmp/wins_destribution.png')
Esempio n. 9
0
def plot_bar_from_counter(counter, ax=None):
    """"
	This function creates a bar plot from a counter.

	:param counter: This is a counter object, a dictionary with the item as the key
	 and the frequency as the value
	:param ax: an axis of matplotlib
	:return: the axis wit the object in it
	"""

    if ax is None:
        fig = plt.figure(figsize=(7, 5))
        ax = fig.add_subplot(111)

    frequencies = [f[1] for f in counter]
    names = [f[0] for f in counter]

    x_coordinates = np.arange(len(counter))
    ax.barh(x_coordinates, frequencies, align='center')

    ax.yaxis.set_major_locator(plt.FixedLocator(x_coordinates))
    ax.yaxis.set_major_formatter(plt.FixedFormatter(names))
    ax.yaxis.set_tick_params(labelsize=10)
    ax.set_ylim(-1, len(counter) + 1)
    ax.set_xlim(0, max(frequencies) + 300)
    for i, v in enumerate(frequencies):
        ax.text(v + 20,
                i - 0.25,
                str(v),
                color='black',
                fontweight='normal',
                fontsize=10)

    fig.subplots_adjust(left=0.4)
    return ax
Esempio n. 10
0
def ohlc_plot(ax, df, open_='open', high_='high', low_='low', close_='close', t_='trading_day', width_=0.7, n_=10):
    assert isinstance(df, pd.DataFrame)
    assert all([x in df.columns for x in (open_, high_, low_, close_)])
    n = len(df)
    width = width_
    offset = width / 2.0

    for i in range(n):
        op = df[open_].values[i]
        hi = df[high_].values[i]
        lo = df[low_].values[i]
        cl = df[close_].values[i]

        x = i
        y = min(op, cl)
        height = abs(cl - op)
        is_raise = op < cl
        clr = 'red' if is_raise else 'green'
        fill = True  # True if is_raise else False

        rect = Rectangle((x - offset, y), width, height, facecolor=clr, edgecolor=clr, linewidth=1, fill=fill)
        vline = Line2D(xdata=(x, x), ydata=(lo, hi), linewidth=1, color=clr)

        ax.add_patch(rect)
        ax.add_line(vline)

    ax.autoscale_view()

    x_label_idx = n_ * np.array(range(len(df) // n_ + 1))
    x_labels = df[t_].iloc[x_label_idx].values
    ax.xaxis.set_major_locator(plt.FixedLocator(x_label_idx))
    ax.xaxis.set_major_formatter(plt.FixedFormatter(x_labels))
Esempio n. 11
0
def plot_bar_from_counter(counter, ax=None):
    """"
    This function creates a bar plot from a counter.

    :param counter: This is a counter object, a dictionary with the item as the key
     and the frequency as the value
    :param ax: an axis of matplotlib
    :return: the axis wit the object in it
    """

    if ax is None:
        fig = plt.figure()
        ax = fig.add_subplot(111)

    frequencies = counter.values()
    names = counter.keys()

    x_coordinates = np.arange(len(counter))
    ax.bar(x_coordinates, frequencies, align='center')
    for idx in xrange(len(frequencies)):
        x = x_coordinates[idx]
        y = frequencies[idx]
        ax.text(x + 3, y + 3, str(v), color='red', fontweight='bold')
    ax.xaxis.set_major_locator(plt.FixedLocator(x_coordinates))
    ax.xaxis.set_major_formatter(plt.FixedFormatter(names))
    ax.set_ylim(0, np.max(frequencies) * 1.1)

    return ax
Esempio n. 12
0
def climate_plot():
    df1 = climate_data()
    df1.name = 'Total GHG'
    df1.index = pd.to_datetime(df1.index, format='%Y')  # 將index改為年datetime object
    df1.index = df1.index.to_period('A').to_timestamp('A')  # 將datetime start of the year change to end of the year

    df_temp = df_temperature
    df_temp.index = pd.to_datetime(df_temp.index, format='%Y-%m-%d')  # 將index改為年datetime object
    df2 = df_temp
    df2 = df2.resample('A').mean()  # 重採樣為以年為頻率,方法為平均
    df_temp = df_temp.resample('Q').mean()

    df_ghg_temp = normalize(pd.concat([df2, df1], axis=1, join='inner')).loc['1990':'2010']  # 1990 年 - 2010 年

    fig, axes = plt.subplots(nrows=2, ncols=2)


    # 子图 1(线形图 kind = 'line'):绘制 1990 年 - 2010 年间,「全球历年温室气体排放总量」与「历年陆地平均温度」及「历年陆地-海洋平均温度」三者之间的线形图。
    #plt.subplot(221)
    ax1 = df_ghg_temp.plot(kind='line', ax=axes[0, 0], figsize=(16, 9))
    ax1.set_xlabel('Years')
    ax1.set_ylabel('Values')
    #ax1.legend(loc='best')
    ax1.autoscale(axis='x', tight=True)
    ax1.grid(True)

    # 子图 2(柱状图 kind = 'bar'):绘制 1990 年 - 2010 年间,「全球历年温室气体排放总量」与「历年陆地平均温度」及「历年陆地-海洋平均温度」三者之间的柱状图。
    #plt.subplot(222)
    ax2 = df_ghg_temp.plot(kind='bar', ax=axes[0, 1], figsize=(16, 9))
    ax2.xaxis.set_major_formatter(plt.FixedFormatter(df_ghg_temp.index.to_series().dt.strftime("%Y")))
    ax2.set_xlabel('Years')
    ax2.set_ylabel('Values')
    #ax2.legend(loc='best')
    ax2.autoscale(axis='x', tight=True)
    ax2.grid(True)


    # 子图 3(面积图 kind = 'area'):绘制有气象数据的年份,「各季度地面平均温度」与「各季度地面-海洋平均温度」面积图。
    #plt.subplot(223)
    ax3 = df_temp.plot(kind='area', ax=axes[1, 0], figsize=(16, 9))
    ax3.set_xlabel('Quarters')
    ax3.set_ylabel('Temperature')
    #ax3.legend(loc='best')
    ax3.autoscale(axis='x', tight=True)
    ax3.grid(True)

    # 子图 4(核密度估计图 kind = 'kde'):绘制有气象数据年份,「各季度地面平均温度」与「各季度地面-海洋平均温度」对应的核密度估计图。
    #plt.subplot(224)
    ax4 = df_temp.plot(kind='kde', ax=axes[1, 1], figsize=(16, 9)) # set figsize 避免擠在一起
    ax4.set_xlabel('Values')
    ax4.set_ylabel('Values')
    ax4.autoscale(axis='x', tight=True)
    ax4.grid(True)
    # Adjust the subplot layout, because the logit one may take more space
    # than usual, due to y-tick labels like "1 - 10^{-3}"
    plt.subplots_adjust(top=0.92, bottom=0.08, left=0.10, right=0.95, hspace=0.25,
                        wspace=0.35)
    plt.show()
    return fig
Esempio n. 13
0
def palplot(k, cmap="viridis"):
    pal = sns.color_palette(palette=cmap, n_colors=k)
    fig, ax = plt.subplots(1, 1)
    pal = np.array(pal)
    pal = pal.reshape((k, 1, 3))
    ax.imshow(pal)
    ax.xaxis.set_major_locator(plt.NullLocator())
    ax.yaxis.set_major_formatter(plt.FixedFormatter(np.arange(k, dtype=int)))
    ax.yaxis.set_major_locator(plt.FixedLocator(np.arange(k)))
    return ax
Esempio n. 14
0
def plot_bar_from_counter(counter):
    ax = fig.add_subplot(1, 1, 1)

    x_coordinates = np.arange(len(counter))
    ax.bar(x_coordinates, counter.values(), align='center')

    ax.xaxis.set_tick_params(rotation=90)
    ax.xaxis.set_major_locator(plt.FixedLocator(x_coordinates))
    ax.xaxis.set_major_formatter(plt.FixedFormatter(list(counter.keys())))

    return ax
def test_twin_axis_locaters_formatters():
    vals = np.linspace(0, 1, num=5, endpoint=True)
    locs = np.sin(np.pi * vals / 2.0)

    majl = plt.FixedLocator(locs)
    minl = plt.FixedLocator([0.1, 0.2, 0.3])

    fig = plt.figure()
    ax1 = fig.add_subplot(1, 1, 1)
    ax1.plot([0.1, 100], [0, 1])
    ax1.yaxis.set_major_locator(majl)
    ax1.yaxis.set_minor_locator(minl)
    ax1.yaxis.set_major_formatter(plt.FormatStrFormatter('%08.2lf'))
    ax1.yaxis.set_minor_formatter(plt.FixedFormatter(['tricks', 'mind', 'jedi']))

    ax1.xaxis.set_major_locator(plt.LinearLocator())
    ax1.xaxis.set_minor_locator(plt.FixedLocator([15, 35, 55, 75]))
    ax1.xaxis.set_major_formatter(plt.FormatStrFormatter('%05.2lf'))
    ax1.xaxis.set_minor_formatter(plt.FixedFormatter(['c', '3', 'p', 'o']))
    ax2 = ax1.twiny()
    ax3 = ax1.twinx()
Esempio n. 16
0
	def create_histogram(self):
		figure = plt.figure()
		ax = figure.add_subplot(111)

		frequencies = self.ticket_dict.values()
		names = self.ticket_dict.keys()

		x_coordinates = np.arange(len(self.ticket_dict))
		ax.bar(x_coordinates , frequencies , align='center')

		ax.xaxis.set_major_locator(plt.FixedLocator(x_coordinates))
		ax.xaxis.set_major_formatter(plt.FixedFormatter(names))
Esempio n. 17
0
def test_learning_rates(train_set_x, train_set_y, test_set_x, test_set_y):
    """
	Plot the learning curve and the accuracy varying the learning rate

	Arguments:
	X_train -- training set represented by a numpy array of shape (number of features, m_train)
	Y_train -- training labels represented by a numpy array (vector) of shape (1, m_train)
	X_test -- test set represented by a numpy array of shape (number of features, m_test)
	Y_test -- test labels represented by a numpy array (vector) of shape (1, m_test)
	"""
    learning_rates = [0.01, 0.001, 0.0001, 0.05, 0.005]
    train_accuracy = []
    test_accuracy = []
    models = {}
    for i in learning_rates:
        print("learning rate is: " + str(i))
        models[str(i)] = logistic_regression(train_set_x,
                                             train_set_y,
                                             test_set_x,
                                             test_set_y,
                                             epochs=1500,
                                             learning_rate=i)
        train_accuracy.append(models[str(i)]["train_accuracy"])
        test_accuracy.append(models[str(i)]["test_accuracy"])
        print('\n' +
              "-------------------------------------------------------" + '\n')

    for i in learning_rates:
        plt.plot(np.squeeze(models[str(i)]["costs"]),
                 label=str(models[str(i)]["learning_rate"]))

    #plot learning curves
    plt.title('Learning curve per Learning rate')
    plt.ylabel('cost')
    plt.xlabel('iterations (hundreds)')
    legend = plt.legend(loc='upper center', shadow=True)
    frame = legend.get_frame()
    frame.set_facecolor('0.90')
    plt.show()

    #plot accuracy bar graph
    df = pd.DataFrame({
        "Train accuracy": train_accuracy,
        "Test accuracy": test_accuracy
    })
    ax = df.plot.bar(color=["SkyBlue", "LightGreen"],
                     rot=0,
                     title="Accuracy per learning rate")
    ax.set_xlabel("Learning rate")
    ax.set_ylabel("Accuracy")
    ax.xaxis.set_major_formatter(plt.FixedFormatter(learning_rates))
    plt.show()
Esempio n. 18
0
def plot_daily_data(df, state, type_):

    fig = sns.barplot(df.index, df[state])
    fig.set_title(f'{type_} Cases ({state})')
    fig.set_ylabel('Number of Cases')

    fig.set_xticklabels(fig.get_xticklabels(),
                        rotation=45,
                        horizontalalignment='right',
                        fontweight='light')

    plt.gca().xaxis.set_major_formatter(
        plt.FixedFormatter(df.index.to_series().dt.strftime('%d %b %Y')))
Esempio n. 19
0
def plot_color_labels(meta, ax):
    sizes = meta.groupby(["merge_class"], sort=False).size()
    uni_class = sizes.index.unique()
    counts = sizes.values
    count_map = dict(zip(uni_class, counts))
    names = []
    colors = []
    for key, val in count_map.items():
        names.append(f"{key} ({count_map[key]})")
        colors.append(CLASS_COLOR_DICT[key])
    colors = colors[::-1]  # reverse because of signal flow sorting
    names = names[::-1]
    palplot(len(colors), colors, ax=ax)
    ax.yaxis.set_major_formatter(plt.FixedFormatter(names))
Esempio n. 20
0
def obspred_plot(paramsplot, fityrs, startage, endage, 
        trans = 'none', trans_time_coords = False, trans_y_coords = False):
    obsframe = paramsplot['test'].rx2('obs')
    ptype = paramsplot['ptype']
    obsage = obsframe.rx2('age')
    predage = base.seq(startage, endage, by = 5)
    xlinlab = r'$\mathrm{log}(t)$'
    ratelinlab = r'$\mathrm{log}(r(t))$'
    survlinlab = r'$\mathrm{log}[-\mathrm{log}[S(t)]]$'
    plotlabs = {'none': {'x': '$t$', 'rate': '$r(t)$', 'surv': '$S(t)$'},
            'gomp_lin': {'x': '$t$', 'rate': ratelinlab, 'surv': survlinlab},
            'weib_lin': {'x': xlinlab,'rate': ratelinlab, 'surv': survlinlab}}
    plt.close()
    fig = plt.figure()
    ax = fig.add_subplot(111)

    def trans_y_ticks(x, p):
        ticks_round = np.round(predcols['none'][ptype], 6)
        return str(ticks_round[p]).replace('.', ',')

    for yr in fityrs:
        obs = obsframe.rx2(str(yr))
        pred = stats.predict(paramsplot['test'].rx2('sourcefit').rx2(str(yr)), 
                newdata = ro.r['list'](age = predage)) 
        obscols = transdict(np.array(obsage), np.array(obs))
        predcols = transdict(np.array(predage), np.array(pred))
        obsplot = ax.plot(obscols[trans]['x'], obscols[trans][ptype], 
                'o', label = str(yr))
        curcolor = obsplot[0].get_color()
        predplot = ax.plot(predcols[trans]['x'], predcols[trans][ptype], 
                color = curcolor)
    
    plt.legend(loc = 2, framealpha = 0.5)
    ax.set_title('Observerad vs förutsedd ' + paramsplot['plottitle'])
    
    if (trans_time_coords):
        ax.xaxis.set_major_locator(plt.FixedLocator(predcols[trans]['x']))
        ax.xaxis.set_major_formatter(plt.FixedFormatter(predcols['none']['x']))
        ax.set_xlabel(plotlabs['none']['x'])
        plt.xticks(rotation = 90)
    else:
        ax.set_xlabel(plotlabs[trans]['x'])

    if (trans_y_coords):
        ax.yaxis.set_major_locator(plt.FixedLocator(predcols[trans][ptype]))
        ax.yaxis.set_major_formatter(plt.FuncFormatter(trans_y_ticks))
        ax.set_ylabel(plotlabs['none'][ptype])
    else:
        ax.set_ylabel(plotlabs[trans][ptype])
def plot_bar_from_counter(counter, ax=None):
    if ax is None:
        fig = plt.figure()
        ax = fig.add_subplot(111)

    frequencies = counter.values()
    names = counter.keys()

    x_coordinates = np.arange(len(counter))
    ax.bar(x_coordinates, frequencies, align='center')

    ax.xaxis.set_major_locator(plt.FixedLocator(x_coordinates))
    ax.xaxis.set_major_formatter(plt.FixedFormatter(names))
    
    return ax
    def configure(self):
        # Set various axis parameters
        self.axis.set_title("Performance of the rat", fontsize=22, pad=10)
        self.axis.set_xlabel("Trials", fontsize=16, labelpad=20)
        self.axis.set_ylabel("Path length (m)", fontsize=16, labelpad=10)
        self.axis.set_ylim(0, TRIAL_TIMEOUT * SWIMING_SPEED * 1.5)
        self.axis.tick_params(length=0, labelsize=12)

        # Add an horizontal grid to the plot
        self.axis.yaxis.grid()

        # Group the labels by day using X labels
        self.axis.xaxis.set_major_locator(
            plt.FixedLocator([2.5 + (i * 4) for i in range(0, 10)]))
        self.axis.xaxis.set_major_formatter(
            plt.FixedFormatter(["Day " + str(i) for i in range(1, 10)]))
Esempio n. 23
0
def plot_bar_graph(dictionary, ax=None):
    if ax is None:
        fig = plt.figure()
        ax = fig.add_subplot(111)

    counts = dictionary.values()
    directories = dictionary.keys()

    plt.xlabel('Directories')
    plt.ylabel('Counts')

    x_coordinates = np.arange(len(dictionary))
    ax.bar(x_coordinates, counts, align='center')

    ax.xaxis.set_major_locator(plt.FixedLocator(x_coordinates))
    ax.xaxis.set_major_formatter(plt.FixedFormatter(directories))

    return ax
Esempio n. 24
0
def plot_class_colormap():
    from src.visualization import palplot
    from src.data import load_metagraph

    mg = load_metagraph("G")
    uni_class, counts = np.unique(mg["merge_class"], return_counts=True)
    count_map = dict(zip(uni_class, counts))
    names = []
    colors = []
    for key, val in CLASS_COLOR_DICT.items():
        if key in uni_class:
            names.append(f"{key} ({count_map[key]})")
            colors.append(val)
    fig, ax = plt.subplots(1, 1, figsize=(3, 15))
    palplot(len(colors), colors, ax=ax)
    ax.yaxis.set_major_formatter(plt.FixedFormatter(names))
    plt.savefig("./maggot_models/notebooks/outs/current_cmap.png",
                dpi=300,
                bbox_inches="tight")
Esempio n. 25
0
def plot_hist_days(df, filename=None, col='latitude', figsize=(15,10), timestamp_col='timestamp'):
    '''
    plot distribution of the data collected on each day
    '''
    hist_df = df.set_index(pd.DatetimeIndex(df[timestamp_col]), drop=False, inplace=False)
    hist_df = hist_df[[col]].groupby(pd.Grouper(freq='D')).count()
    
    sns.set()
    fig, ax = plt.subplots(figsize=figsize)
    plot = sns.barplot(x=hist_df.index, y=hist_df[col], ax=ax);
    ax.set_xlabel('Timestamp');
    ax.set_ylabel('Count');
    ax.xaxis_date();
    ax.xaxis.set_major_formatter(plt.FixedFormatter(hist_df.index.to_series().dt.strftime("%d %b")));
    for tick in ax.get_xticklabels():
        tick.set_rotation(65);
    
    if filename is not None:
        fig = plot.get_figure()
        fig.savefig(filename)
def save_ability_mathces_statistics(statistics, matches):  # pylint: disable=R0914
    fig = plt.figure()
    ax = fig.add_subplot(111)

    keys, wins = list(zip(*statistics))  # pylint: disable=W0612

    index = dict((key, i) for i, key in enumerate(keys))

    data = []
    for (x, y), (w_1, w_2) in list(matches.items()):
        data.append((index[x], index[y], 1000 * w_1 / float(w_1 + w_2)))
        data.append((index[y], index[x], 1000 * w_2 / float(w_1 + w_2)))

    x, y, powers = list(zip(*data))

    ax.scatter(x, y, s=powers, marker='o', c=powers)

    ax.set_xlim(-0.5, len(statistics) + 0.5)
    ax.set_ylim(-0.5, len(statistics) + 0.5)

    locator = plt.IndexLocator(1, 0)
    formatter = plt.FixedFormatter([s[0] for s in statistics])

    ax.xaxis.set_major_locator(locator)
    ax.xaxis.set_major_formatter(formatter)
    plt.setp(plt.getp(ax, 'xticklabels'),
             rotation=45,
             fontsize=8,
             horizontalalignment='right')

    ax.yaxis.set_major_locator(locator)
    ax.yaxis.set_major_formatter(formatter)
    plt.setp(plt.getp(ax, 'yticklabels'), fontsize=8)

    ax.set_title('matches results')

    plt.tight_layout()

    plt.savefig('/tmp/matches.png')
Esempio n. 27
0
def test_epochs(train_set_x, train_set_y, test_set_x, test_set_y):
    """
	Plot the  accuracy varying the number of epochs
	Arguments:
	X_train -- training set represented by a numpy array of shape (number of features, m_train)
	Y_train -- training labels represented by a numpy array (vector) of shape (1, m_train)
	X_test -- test set represented by a numpy array of shape (number of features, m_test)
	Y_test -- test labels represented by a numpy array (vector) of shape (1, m_test)
	"""
    epochs = [100, 500, 1000, 2000, 5000, 10000]
    models = {}
    train_accuracy = []
    test_accuracy = []

    for i in epochs:
        print("No of epochs: " + str(i))
        models[str(i)] = logistic_regression(train_set_x,
                                             train_set_y,
                                             test_set_x,
                                             test_set_y,
                                             epochs=i)
        train_accuracy.append(models[str(i)]["train_accuracy"])
        test_accuracy.append(models[str(i)]["test_accuracy"])
        print('\n' +
              "-------------------------------------------------------" + '\n')

    #plot accuracy bar graph
    df = pd.DataFrame({
        "Train accuracy": train_accuracy,
        "Test accuracy": test_accuracy
    })
    ax = df.plot.bar(color=["SkyBlue", "LightGreen"],
                     rot=0,
                     title="Accuracy per number of epochs")
    ax.set_xlabel("Number of epochs")
    ax.set_ylabel("Accuracy")
    ax.xaxis.set_major_formatter(plt.FixedFormatter(epochs))
    plt.show()
Esempio n. 28
0
def plot_distrib(train_distrib, val_distrib, test_distrib, info):
    fig, ax = plt.subplots()
    width = 0.25

    x = np.arange(len(info))

    ax.bar(x - width, train_distrib, width, label="Trainig")
    ax.bar(x, val_distrib, width, label="Validation")
    ax.bar(x + width, test_distrib, width, label="Test")


    #setting custom labels: put symbols (user input) instead of numbers on the x avis
    ax.xaxis.set_major_locator(plt.FixedLocator(x))
    ax.xaxis.set_major_formatter(plt.FixedFormatter(info))


    #plot configuration
    plt.title("Distribution of Instances")
    plt.xlabel("Symbol")
    plt.ylabel("Frequency")
    ax.legend()
    ax.grid(True, axis='y', alpha=0.35)

    plt.show()
Esempio n. 29
0
def plot_case_histograms(df, top_n_provinces=6, suptitle=''):

    resampled = df.T.iloc[:, :top_n_provinces].resample('d').sum()
    print(resampled.tail())

    # df.columns = [dt.strftime('%m/%d') for dt in df.columns]

    axes = resampled.plot.bar(rot=90,
                              subplots=True,
                              sharey=True,
                              figsize=(6, 8))

    for ax in axes:
        ax.legend(loc=2)
        ax.set(title='')

    ax.xaxis.set_major_formatter(
        plt.FixedFormatter(resampled.index.to_series().dt.strftime("%d %b")))

    fig = plt.gcf()

    fig.suptitle(suptitle, y=1)
    # fig.autofmt_xdate()
    fig.set_tight_layout(True)
Esempio n. 30
0
def plot_bar_from_counter(counter, ax=None):
    """"
    This function creates a bar plot from a counter.

    :param counter: This is a counter object, a dictionary with the item as the key
     and the frequency as the value
    :param ax: an axis of matplotlib
    :return: the axis wit the object in it
    """

    if ax is None:
        fig = plt.figure()
        ax = fig.add_subplot(111)

    frequencies = counter.values()
    names = counter.keys()

    x_coordinates = np.arange(len(counter))
    ax.bar(x_coordinates, frequencies, align='center')

    ax.xaxis.set_major_locator(plt.FixedLocator(x_coordinates))
    ax.xaxis.set_major_formatter(plt.FixedFormatter(names))

    return ax