Esempio n. 1
0
def main():
    df = pd.read_csv("/home/saxobeat/PythonML/MLCodes/Spambase/Dataset/spamdata.csv")
    features = df.iloc[:,0:57].values
    labels = df.iloc[:,57].values
    X_train, X_test, y_train, y_test = tts(features, labels, test_size=0.25, shuffle=True, random_state=8)
    models = []
    models.append(('LR', LR(solver='lbfgs', max_iter=2000, tol=0.0001)))
    models.append(('LDA', LDA()))
    models.append(('DTC', DTC()))
    models.append(('KNC', KNC()))
    models.append(('MNB', MNB()))
    models.append(('RFC', RFC(n_estimators=100)))
    models.append(('SVC', SVC(gamma='scale', kernel='rbf', probability=True)))
    x0 = np.linspace(0,1,10)
    plt.plot([0,1],[0,1],'k',linestyle='--')
    for name,model in models:
        model.fit(X_train, y_train)
        y_pred = model.predict_proba(X_test)
        y_score = y_pred[:,1]
        fpr, tpr, thresholds = roc_curve(y_test, y_score)
        label = "{}({})".format(name,auc(fpr, tpr))
        plt.plot(fpr,tpr,label=label)
        plt.legend()
        # plt.legend(name)

    plt.title("Reciever Operating Characteristics")
    plt.grid()
    plt.cool()
    plt.xlabel("Fasle Positive Rate")
    plt.ylabel("True Positive Rate")
    plt.savefig("roc.pdf")
Esempio n. 2
0
	def __call__(self,u,v,w,iteration):
		q = 4

		plt.cool()
		if self.x == None:
			ny = v.shape[1]
			nz = v.shape[0]
			self.x,self.y = np.meshgrid(range(ny),range(nz))
		x,y = self.x,self.y

		if self.iterations == None:
			self.iterations = self.sim.bulk_calc(getIteration())
		all_itr = self.iterations

		if self.xvar == None:
			class temp(sim_operation):
				def get_params(self):
					return ["u"]
				def __call__(self,u):
					return np.max(self.sim.ddx(u))

			self.xvar = self.sim.bulk_calc(temp())
		xvar_series = self.xvar

		min = np.min(xvar_series)
		max = np.max(xvar_series)
		if min <= 0:
			min = 0.000001
		if max <= min:
			max = 0.00001
	
		avgu = np.average(u,2)
		avgv = np.average(v,2)
		avgw = -np.average(w,2)
		xd = self.sim.ddx(u)
		xd2d = np.max(xd,2)
		xd1d = np.max(xd2d,1)

		plt.subplot(221)
		plt.imshow(avgu)
		plt.quiver(x[::q,::q],y[::q,::q],avgv[::q,::q],avgw[::q,::q])
		plt.title('Avg u')
		plt.axis("tight")

		plt.subplot(222)
		plt.imshow(xd2d)
		plt.title('Max x Variation (y-z)')
		plt.axis("tight")

		plt.subplot(223)
		plt.plot(xd1d)
		plt.title('Max x Variation (z)')
		plt.axis("tight")

		plt.subplot(224)
		plt.plot(all_itr,xvar_series, '--')
		plt.plot([iteration,iteration],[min,max])
		plt.semilogy()
		plt.title('Max x Variation (t)')
		plt.axis("tight")
Esempio n. 3
0
def plot():
    # set default color
    #colors = ['brown', 'r', 'b', 'oldlace', 'yellowgreen', 'teal', 'tomato', 'palegreen', 'cornsilk', 'pink', 'crimson', 'darkgreen', 'hotpink', 'gray', 'green', 'gold', 'beige', 'bisque']
    colors = [(0., 1, 1),
              (0.05, 1, 1), (0.11, 0, 0), (0.66, 1, 1), (0.89, 1, 1),
              (1, 0.5, 0.5), (0, 1, 1), (0.05, 1, 1), (0.11, 0, 0),
              (0.375, 1, 1), (0.64, 1, 1), (0.91, 0, 0), (1, 0, 0), (0., 1, 1),
              (0.05, 1, 1), (0.11, 1, 1), (0.34, 1, 1), (0.65, 0, 0),
              (1, 0, 0)]

    Raw_edge = []
    Bcc_matrix = []
    cut_arr = []
    n = readRawFile(
        "/Users/luodian/Desktop/DSA/Graph Plus/Graph Plus/DATA/in.txt",
        Raw_edge)
    readBccFile(
        "/Users/luodian/Desktop/DSA/Graph Plus/Graph Plus/DATA/Bcc.txt",
        Bcc_matrix, cut_arr)

    all_node = range(1, n + 1)

    G = nx.Graph()
    G.add_edges_from(Raw_edge)
    G.add_nodes_from(all_node)
    pos = nx.spring_layout(G)

    # color the bcc nodes
    for i in xrange(0, len(Bcc_matrix)):
        nx.draw_networkx_nodes(G,
                               pos,
                               nodelist=Bcc_matrix[i],
                               alpha=1,
                               node_color=colors[i])

    # color the cut nodes
    nx.draw_networkx_nodes(G, pos, nodelist=cut_arr, node_color='salmon')
    nx.draw_networkx_edges(G, pos, edge_color='black', alpha=1, width=0.8)
    nx.draw_networkx_labels(G, pos)
    # print type(node_blue)
    # nx.draw_networkx_edges(G, pos = nx.spring_layout(G), edgelist=[(1,2)], edge_color = 'blue')
    # nx.draw_networkx_nodes(G, pos, nodelist = Bcc_matrix[1], node_color = 'b')
    font = {'color': 'k', 'fontweight': 'bold', 'fontsize': 14}
    plt.title("The cut and bcc info", font)
    plt.annotate('The cut vertexs', (1, 1.15))
    plt.plot([0.95], [1.1666], color='salmon', marker='o', markersize=15)
    plt.axis('off')
    plt.cool()
    plt.savefig('Bcc.png', dpi=233)
    plt.show()
Esempio n. 4
0
def plot(x, y, z, c, experimentNumber):
    x = np.asarray(x)
    y = np.asarray(y)
    z = np.asarray(z)

    c = np.asarray(c)

    fig = plt.figure()
    ax = fig.gca(projection='3d')

    img = ax.scatter(x, y, z, c=c, cmap=plt.cool())

    ax.set_xlabel('Inputs')
    ax.set_ylabel('Outputs')
    ax.set_zlabel('$P_{expected}$')

    cbrar = fig.colorbar(img)
    cbrar.set_label('$P_{real}$')

    # ax.legend()
    plt.title("Relation of inputs, outputs and non-determinism")

    outF = open("results/experiment2.txt", "w")
    sys.stdout = outF

    print("inputs,outputs,prevalence,nondeterminism")
    for i, _ in enumerate(x):
        print("{},{},{:04.2f},{:06.4f}".format(x[i], y[i], z[i], c[i]))

    plt.savefig('results/experiment4.png'.format(experimentNumber))
    plt.show()
def plot_convergence(
    order_of_probed_points: List[List[int]],
    loss_function: Callable,
    truth_value: List[int],
    step_sizes: List[int],
) -> None:
    fig = plt.figure()
    ax = fig.add_subplot(projection='3d')
    # probed points
    x = np.array([point[0]
                  for point in order_of_probed_points] + [truth_value[0]])
    y = np.array([point[1]
                  for point in order_of_probed_points] + [truth_value[1]])
    z = np.array([point[2]
                  for point in order_of_probed_points] + [truth_value[2]])
    c = np.array([
        loss_function(point, step_sizes, truth_value)
        for point in order_of_probed_points
    ] + [0])
    # ax.plot3D(x, y, z, 'grey')
    image = ax.scatter3D(x, y, z, c=c, cmap=plt.cool())
    ax.set_xlabel('print temperature')
    ax.set_ylabel('retraction distance')
    ax.set_zlabel('flow rate')
    fig.colorbar(image, pad=0.05, label="loss", location='left')
    plt.show()
Esempio n. 6
0
def write_snrmap(outputfile, intsnr, ds):
    """
	Update the CTF parameters file with new CTF file lines.
	
	Parameters:
	  outputfile    Filename of output image file
	  intsnr   Integrated SNR
	  ds   Frequency sampling
	"""

    # Import plotting libaries
    import matplotlib
    import numpy as np
    import matplotlib.cm as cm
    import matplotlib.mlab as mlab
    import matplotlib.pyplot as plt

    # Setup plotting parameters
    matplotlib.rcParams['xtick.direction'] = 'out'
    matplotlib.rcParams['ytick.direction'] = 'out'

    # Create plotting variables
    x = np.arange(0., ds * len(intsnr), ds)
    y = np.arange(0., 0.5, 0.005)
    X, Y = np.meshgrid(x, y)
    Z = np.transpose(np.array(intsnr))

    # Plot result
    plt.figure()
    CS = plt.contourf(X,
                      Y,
                      Z,
                      np.arange(0.,
                                np.max(intsnr) + old_div(np.max(intsnr), 20.),
                                old_div(np.max(intsnr), 20.)),
                      antialiased=True)
    CB = plt.colorbar(CS, shrink=0.8, format='%i')
    plt.cool()
    plt.title('Image Coverage of Frequency Space')
    plt.xlabel('Frequency (1/A)')
    plt.ylabel('Signal-to-Noise Ratio')
    plt.savefig(outputfile)
Esempio n. 7
0
def plot(label):
    # set default color
    # colors = ['brown', 'r', 'b', 'oldlace', 'yellowgreen', 'teal', 'tomato', 'palegreen', 'cornsilk', 'pink', 'crimson', 'darkgreen', 'hotpink', 'gray', 'green', 'gold', 'beige', 'bisque']
    colors = [(0., 1, 1),
              (0.05, 1, 1), (0.11, 0, 0), (0.66, 1, 1), (0.89, 1, 1),
              (1, 0.5, 0.5), (0, 1, 1), (0.05, 1, 1), (0.11, 0, 0),
              (0.375, 1, 1), (0.64, 1, 1), (0.91, 0, 0), (1, 0, 0), (0., 1, 1),
              (0.05, 1, 1), (0.11, 1, 1), (0.34, 1, 1), (0.65, 0, 0),
              (1, 0, 0)]

    Raw_edge = []
    n = readRawFile(
        "/Users/luodian/Desktop/network_alignment/graphs/{}.txt".format(label),
        Raw_edge)

    n = int(n)
    all_node = range(0, n)

    G = nx.DiGraph()
    G.add_edges_from(Raw_edge)
    G.add_nodes_from(all_node)
    pos = nx.spring_layout(G)
    nx.draw_networkx_edges(G,
                           pos,
                           edge_color='blue',
                           arrows=True,
                           arrowstyle='->',
                           arrowsize=20,
                           alpha=1,
                           width=0.8)
    nx.draw_networkx_labels(G, pos)
    # print type(node_blue)
    # nx.draw_networkx_edges(G, pos = nx.spring_layout(G), edgelist=[(1,2)], edge_color = 'blue')
    nx.draw_networkx_nodes(G, pos, nodelist=all_node, node_color='orange')
    font = {'color': 'k', 'fontweight': 'bold', 'fontsize': 14}
    plt.title("Graph of {}".format(label), font)
    # plt.annotate('The cut vertexs', (1, 1.15))
    # plt.plot([0.95], [1.1666], color='salmon', marker='o', markersize=15)
    plt.axis('off')
    plt.cool()
    plt.savefig('{}_digraph.png'.format(label), dpi=200)
    plt.show()
Esempio n. 8
0
def write_snrmap( outputfile, intsnr, ds ) :
	"""
	Update the CTF parameters file with new CTF file lines.
	
	Parameters:
	  outputfile    Filename of output image file
	  intsnr   Integrated SNR
	  ds   Frequency sampling
	"""
	
	# Import plotting libaries
	import matplotlib
	import numpy as np
	import matplotlib.cm as cm
	import matplotlib.mlab as mlab
	import matplotlib.pyplot as plt

	# Setup plotting parameters
	matplotlib.rcParams['xtick.direction'] = 'out'
	matplotlib.rcParams['ytick.direction'] = 'out'

	# Create plotting variables
	x = np.arange( 0., ds * len( intsnr ), ds )
	y = np.arange( 0., 0.5, 0.005 )
	X,Y = np.meshgrid( x, y )
	Z = np.transpose( np.array( intsnr ) )

	# Plot result
	plt.figure( )
	CS = plt.contourf( X, Y, Z, np.arange( 0., np.max( intsnr ) + np.max( intsnr ) / 20., np.max( intsnr ) / 20. ), antialiased = True )
	CB = plt.colorbar( CS, shrink = 0.8, format = '%i' )
	plt.cool( )
	plt.title( 'Image Coverage of Frequency Space' )
	plt.xlabel( 'Frequency (1/A)' )
	plt.ylabel( 'Signal-to-Noise Ratio' )
	plt.savefig( outputfile )
Esempio n. 9
0
    def show_relative_error_results(self, expected_results):
        fig = plt.figure()
        ax = fig.add_subplot(111, projection='3d')

        result = self.anfis_estimate_labels(self.premises, self.op, self.tsk)
        error_result = np.abs(expected_results - result) / expected_results

        img = ax.scatter(self.training_data[0],
                         self.training_data[1],
                         self.training_data[2],
                         c=error_result.flatten(),
                         cmap=plt.cool())
        fig.colorbar(img)
        fig.canvas.set_window_title('Relative error')
        plt.show()
Esempio n. 10
0
def graph(s):
    """
    This code is horrific. Unfortunately started local NSGA2 without checking so will have to do for now
    :param s: seed
    :return: nothing
    """
    data = []
    input = []
    datat = True
    mixed = [[], [], [], []]
    for x in open("results/" + str(s) + "_results.txt"):
        x = x.replace("\n", "")
        if x == "#":
            datat = False
            continue
        x = x.replace("\n", "")
        x = x.split(",")
        if datat:
            data.append([-float(x[0]), -float(x[1])])
            mixed[0].append(-float(x[0]))
            mixed[1].append(-float(x[1]))
        else:
            input.append([int(float(x[0])), float(x[1])])
            mixed[2].append(int(float(x[0])))
            mixed[3].append(float(x[1]))
    #Scatter(tight_layout=True).add(np.array(mixed),s=10).show()
    #Scatter().add(np.array(data)).show()
    #Scatter().add(np.array(input)).show()
    fig = plt.figure()
    ax = fig.add_subplot(111, projection='3d')

    x = np.array(mixed[0])
    y = np.array(mixed[1])
    z = np.array(mixed[2])
    c = np.array(mixed[3])

    img = ax.scatter(x, y, z, c=c, cmap=plt.cool())
    fig.colorbar(img)
    plt.show()
Esempio n. 11
0
	def __call__(self,u,iteration):

		plt.cool()

		if self.iterations == None:
			self.iterations = self.sim.bulk_calc(getIteration())
		all_itr = self.iterations

		if self.xvar == None:
			class temp(sim_operation):
				def get_params(self):
					return ["u"]
				def __call__(self,u):
					return np.max(self.sim.ddx(u))

			self.xvar = self.sim.bulk_calc(temp())
		xvar_series = self.xvar

		min = np.min(xvar_series)
		max = np.max(xvar_series)
		if min <= 0:
			min = 0.000001
		if max <= min:
			max = 0.00001
	
		uavg = np.average(u,2)
		xd = self.sim.ddx(u)
		xd2d = np.max(xd,2)

		plt.subplot(241)
		plt.imshow(xd2d)
		plt.title('Max x Variation (y-z)')
		plt.axis("tight")

		plt.subplot(242)
		plt.plot(uavg[58,:])
		plt.title('z = 58')
		plt.axis("tight")

		plt.subplot(243)
		plt.plot(uavg[60,:])
		plt.title('z = 60')
		plt.axis("tight")

		plt.subplot(244)
		plt.plot(uavg[62,:])
		plt.title('z = 62')
		plt.axis("tight")

		plt.subplot(245)
		plt.plot(all_itr,xvar_series, '--')
		plt.plot([iteration,iteration],[min,max])
		plt.semilogy()
		plt.title('Max x Variation (t)')
		plt.axis("tight")

		plt.subplot(246)
		plt.plot(uavg[64,:])
		plt.title('z = 64')
		plt.axis("tight")

		plt.subplot(247)
		plt.plot(uavg[64,:])
		plt.title('z = 64')
		plt.axis("tight")

		plt.subplot(248)
		plt.plot(uavg[66,:])
		plt.title('z = 66')
		plt.axis("tight")
Esempio n. 12
0
    x_range = np.linspace(x_min - 1, x_max + 1, 200)
    y_range = np.linspace(y_min - 1, y_max + 1, 200)
    xx, yy = np.meshgrid(x_range, y_range)

    for k, model in enumerate((LDA(), QDA())):
        #fit, predict
        clf = model
        clf.fit(points, labels)
        z = clf.predict(np.c_[xx.ravel(), yy.ravel()])
        z = z.reshape(200, 200)
        z_p = clf.predict_proba(np.c_[xx.ravel(), yy.ravel()])

        #draw areas and boundries
        pl.figure()
        pl.pcolormesh(xx, yy, z)
        pl.cool()
        for j in range(len(u)):
            pl.contour(xx,
                       yy,
                       z_p[:, j].reshape(200, 200), [0.5],
                       lw=3,
                       colors='k')

        #draw points
        for i, point in enumerate(x):
            pl.plot(point[:, 0], point[:, 1], c[i] + m[i])

        #draw contours
        for i in range(len(u)):
            prob = mvn2d(x_range, y_range, u[i], sigma[i])
            cs = pl.contour(xx, yy, prob, colors=c[i])
Esempio n. 13
0
import matplotlib.pyplot as plt
import numpy as np
dx, dy = 0.015, 0.05
x = np.arange(-4.0, 4.0, dx)
y = np.arange(-4.0, 4.0, dy)
X, Y = np.meshgrid(x, y)
extent = np.min(x), np.max(x), np.min(y), np.max(y)
Z1 = np.add.outer(range(8), range(8)) % 2
plt.imshow(Z1,
           cmap="binary_r",
           interpolation="nearest",
           extent=extent,
           alpha=1)


def copyassignment(x, y):
    return (1 - x / 2 + x**5 + y**6) * np.exp(-(x**2 + y**2))


z2 = copyassignment(X, Y)
plt.imshow(z2, alpha=0.7, interpolation='bilinear', extent=extent)
plt.cool()
plt.title('matplotlib.pyplot.cool() function example', fontweight="bold")
plt.show()
    x_range = np.linspace(x_min - 1, x_max + 1, 200)
    y_range = np.linspace(y_min - 1, y_max + 1, 200)
    xx, yy = np.meshgrid(x_range, y_range)

    for k, model in enumerate((LDA(), QDA())):
        #fit, predict
        clf = model
        clf.fit(points, labels)
        z = clf.predict(np.c_[xx.ravel(), yy.ravel()])
        z = z.reshape(200, 200)
        z_p = clf.predict_proba(np.c_[xx.ravel(), yy.ravel()])

        #draw areas and boundries
        pl.figure()
        pl.pcolormesh(xx, yy, z)
        pl.cool()
        for j in range(len(u)):
            pl.contour(xx, yy, z_p[:, j].reshape(200, 200),
                       [0.5], lw=3, colors='k')

        #draw points
        for i, point in enumerate(x):
            pl.plot(point[:, 0], point[:, 1], c[i] + m[i])

        #draw contours
        for i in range(len(u)):
            prob = mvn2d(x_range, y_range, u[i], sigma[i])
            cs = pl.contour(xx, yy, prob, colors=c[i])

        pl.title('Seperate {0} classes using {1}'.
                 format(len(u), model_names[k]))
Esempio n. 15
0
from mpl_toolkits.mplot3d import Axes3D
import matplotlib.pyplot as plt

fig = plt.figure()
ax2 = fig.add_subplot(111, projection='3d')

x1 = df.ix[0:, 'x1']
x2 = df.ix[0:, 'x2']
x3 = df.ix[0:, 'x3']
y = df.ix[0:, 'y']

if sys.argv[1:] == ['winter']:
    p = ax2.scatter(x1, x2, x3, c=y, cmap=plt.winter())
elif sys.argv[1:] == ['cool']:
    p = ax2.scatter(x1, x2, x3, c=y, cmap=plt.cool())
elif sys.argv[1:] == ['viridis']:
    p = ax2.scatter(x1, x2, x3, c=y, cmap=plt.viridis())
elif sys.argv[1:] == ['plasma']:
    p = ax2.scatter(x1, x2, x3, c=y, cmap=plt.plasma())
elif sys.argv[1:] == ['inferno']:
    p = ax2.scatter(x1, x2, x3, c=y, cmap=plt.inferno())
elif sys.argv[1:] == ['jet']:
    p = ax2.scatter(x1, x2, x3, c=y, cmap=plt.jet())
elif sys.argv[1:] == ['gist_ncar']:
    p = ax2.scatter(x1, x2, x3, c=y, cmap=plt.gist_ncar())
elif sys.argv[1:] == ['rainbow']:
    p = ax2.scatter(x1, x2, x3, c=y, cmap=plt.nipy_spectral())
else:
    p = ax2.scatter(x1, x2, x3, c=y, cmap=plt.nipy_spectral())