Esempio n. 1
0
def test_bbox_inches_tight():
    #: Test that a figure saved using bbox_inches='tight' is clipped correctly
    data = [[66386, 174296, 75131, 577908, 32015],
            [58230, 381139, 78045, 99308, 160454],
            [89135, 80552, 152558, 497981, 603535],
            [78415, 81858, 150656, 193263, 69638],
            [139361, 331509, 343164, 781380, 52269]]

    colLabels = rowLabels = [''] * 5

    rows = len(data)
    ind = np.arange(len(colLabels)) + 0.3  # the x locations for the groups
    cellText = []
    width = 0.4     # the width of the bars
    yoff = np.zeros(len(colLabels))
    # the bottom values for stacked bar chart
    fig, ax = plt.subplots(1, 1)
    for row in range(rows):
        ax.bar(ind, data[row], width, bottom=yoff, align='edge', color='b')
        yoff = yoff + data[row]
        cellText.append([''])
    plt.xticks([])
    plt.xlim(0, 5)
    plt.legend([''] * 5, loc=(1.2, 0.2))
    # Add a table at the bottom of the axes
    cellText.reverse()
    plt.table(cellText=cellText, rowLabels=rowLabels, colLabels=colLabels,
              loc='bottom')
Esempio n. 2
0
def test_zorder():
    data = [[66386, 174296],
            [58230, 381139]]

    colLabels = ('Freeze', 'Wind')
    rowLabels = ['%d year' % x for x in (100, 50)]

    cellText = []
    yoff = np.zeros(len(colLabels))
    for row in reversed(data):
        yoff += row
        cellText.append(['%1.1f' % (x/1000.0) for x in yoff])

    t = np.linspace(0, 2*np.pi, 100)
    plt.plot(t, np.cos(t), lw=4, zorder=2)

    plt.table(cellText=cellText,
              rowLabels=rowLabels,
              colLabels=colLabels,
              loc='center',
              zorder=-2,
              )

    plt.table(cellText=cellText,
              rowLabels=rowLabels,
              colLabels=colLabels,
              loc='upper center',
              zorder=4,
              )
    plt.yticks([])
Esempio n. 3
0
  def plot(self):
    # Read events.
    #self.read_simple_events()
    #self.read_external_events()
    self.read_events()
    self.scale(self.scale_factor)
    
    # Set the plot size.
    grid_row = 2
    grid_fig_col = self.num_simple_events / 2
    grid_legend_col = 8
    grid_col = grid_fig_col + grid_legend_col
    fig = plt.figure(figsize = (grid_col, grid_row * 6))

    # Plot simple events.
    plt.subplot2grid((grid_row, grid_col), (0, 0), colspan = grid_fig_col)
    x = np.arange(self.num_simple_events)
    # Prepare colors.
    colors = self.get_colors(len(V8_STATES_PLOT))
    plt.stackplot(x, [self.data[key] for key in V8_STATES_PLOT], colors = colors)
    # Set the axis limits.
    plt.xlim(xmin = 0, xmax = self.num_simple_events - 1)
    plt.ylim(ymin = 0, ymax = self.sampling_period)
    # Draw legend.
    plt.subplot2grid((grid_row, grid_col), (0, grid_col - 1))
    total_ticks = self.num_simple_events * self.sampling_period
    plt.table(cellText = [[str(100 * sum(self.data[key]) / total_ticks) + ' %'] for key in reversed(V8_STATES_PLOT)],
              rowLabels = V8_STATES_PLOT[::-1],
              rowColours = colors[::-1],
              colLabels = ['Ticks'],
              loc = 'center')
    plt.xticks([])
    plt.yticks([])
    
    # Plot external events.
    plt.subplot2grid((grid_row, grid_col), (1, 0), colspan = grid_fig_col)
    x = np.arange(self.num_external_events)
    # Prepare colors.
    colors = self.get_colors(len(EXTERNAL_DETAILS))
    plt.stackplot(x, [self.data_external[key] for key in EXTERNAL_DETAILS], colors = colors)
    # Set the axis limits.
    plt.xlim(xmin = 0, xmax = self.num_external_events - 1)
    plt.ylim(ymin = 0, ymax = self.sampling_period)
    # Draw legend.
    plt.subplot2grid((grid_row, grid_col), (1, grid_col - 3), colspan = 3)
    total_ticks = 0
    for key in EXTERNAL_DETAILS:
      total_ticks += sum(self.data_external[key]) + 1
    plt.table(cellText = [[str(100 * sum(self.data_external[key]) / total_ticks) + ' %', str(sum(self.num_external[key]))] for key in reversed(EXTERNAL_DETAILS)],
              rowLabels = EXTERNAL_DETAILS[::-1],
              rowColours = colors[::-1],
              colLabels = ['Ticks', '# of Times'],
              loc = 'center')
    plt.xticks([])
    plt.yticks([])
    
    # Finally draw the plot.
    plt.tight_layout()
    plt.show()
Esempio n. 4
0
		def plotTable(inData):
			fig = plt.figure(figsize=(10,5))
			plt.axis('off')
			plt.tight_layout()
			plt.table(cellText=[row for row in inData[1:]],
				loc = 'center',
				rowLabels = range(len(inData)-1),
				colLabels = inData[0])
Esempio n. 5
0
	def plotTable(inData):
		fig = plt.figure(figsize=(20,10))
		plt.axis('off')
		plt.tight_layout()
		plt.table(cellText=[row[1:] for row in inData[1:]], 
			loc = 'center',
			rowLabels = [row[0] for row in inData[1:]],
			colLabels = inData[0])
Esempio n. 6
0
def reportwin(namel,report,reportl):
    save_report=open(str(direktorij+'/report.tex'),'w')
    save_report.write(report)
    save_report.close()
    plt.figure(figsize=(4,3))
    ax=plt.gca()
    plt.axis('off')
    plt.table(cellText=reportl, colLabels=namel,loc='center')
    plt.savefig(str(direktorij+'/report.png'))
    plt.close()
Esempio n. 7
0
def visualize_clf(file_path):
	ext_pattern = "14"
	int_pattern = "23"
	path = "{}/**/*{}*.p".format(file_path,ext_pattern)
	
	files = glob(path)
	print files
	thresholds = np.arange(0.65,1,0.05)
	file_dict = dict()
	for f in files:
		filename = f[f.rfind('/')+1:]
		sub = filename[:filename.find('_')]
		pair = (f,f.replace(ext_pattern,int_pattern))
		print pair
		if sub in file_dict:
			file_dict[sub].append(pair) 
		else:
			file_dict[sub]=[pair]
	print file_dict
	for sub,file_list in file_dict.iteritems():
		fig = plt.figure()	
		cell_text = []
		col_labels= []
		file_list = sorted(file_list)
		for i,pair in enumerate(file_list):
			print pair
			f = pair[0]
			sl = pickle.load(open(f,'rb'))
			data = sl.samples[0]
			fig.add_subplot(4,4,i+1)
			title = f[f.find('-')+1:]
			plt.title(title)
			col_labels.append(title)
			plt.hist(data)
			coltext = []
			print title
			for thr in thresholds:
			    data_3d = sl.a.mapper.reverse1(sl.samples)[0]
			    cluster_map, n_clusters = ndimage.label(data_3d > thr)
			    cluster_sizes = np.bincount(cluster_map.ravel())[1:]
			    if len(cluster_sizes) != 0:
			        coltext.append("{}".format(np.max(cluster_sizes)))
			    else:
				coltext.append(0)
			cell_text.append(coltext)
		ax = fig.add_subplot(4,4,len(files)+2)
		ax.axis('off')
		print len(cell_text)
		plt.table(cellText= cell_text,rowLabels=col_labels, 
				colLabels=thresholds,loc='center right')
		plt.savefig('{}.png'.format(sub))
def output_table(celltext,title,col_labels,filename,fig_size,pos_y,col_width):
    prop = matplotlib.font_manager.FontProperties(fname=r'MTLmr3m.ttf', size=14.5)

    fig=plt.figure(figsize=fig_size)
    ax = fig.add_subplot(111)

    ax.set_title(title,y=pos_y,fontproperties=prop)
    ax.xaxis.set_visible(False)
    ax.yaxis.set_visible(False)
    for sp in ax.spines.itervalues():
        sp.set_color('w')
        sp.set_zorder(0)
    #col_labels = ['Rank','Name', 'Yell','Lv.']

    the_table = plt.table(cellText=celltext,
                          colLabels=col_labels,
                          loc='center'
                          )

    cells = the_table.get_celld()
    for i in range(len(celltext)+1): #0.09,0.55,0.1,0.05,0.13
        for k in range(len(col_width)):
            cells[(i,k)].set_width(col_width[k])
        
    for pos, cell in cells.iteritems():
        cell.set_text_props( fontproperties=prop )

    the_table.auto_set_font_size(False)
    the_table.set_fontsize(11.5)
    plt.savefig(filename)
def test_bbox_inches_tight():
    "Test that a figure saved using bbox_inches'tight' is clipped right"
    rcParams.update(rcParamsDefault)

    data = [[  66386,  174296,   75131,  577908,   32015],
            [  58230,  381139,   78045,   99308,  160454],
            [  89135,   80552,  152558,  497981,  603535],
            [  78415,   81858,  150656,  193263,   69638],
            [ 139361,  331509,  343164,  781380,   52269]]

    colLabels = ('Freeze', 'Wind', 'Flood', 'Quake', 'Hail')
    rowLabels = ['%d year' % x for x in (100, 50, 20, 10, 5)]

    rows = len(data)
    ind = np.arange(len(colLabels)) + 0.3  # the x locations for the groups
    cellText = []
    width = 0.4     # the width of the bars
    yoff = np.array([0.0] * len(colLabels))
    # the bottom values for stacked bar chart
    fig, ax = plt.subplots(1,1)
    for row in xrange(rows):
        plt.bar(ind, data[row], width, bottom=yoff)
        yoff = yoff + data[row]
        cellText.append(['%1.1f' % (x/1000.0) for x in yoff])
    plt.xticks([])
    plt.legend(['1', '2', '3', '4', '5'], loc = (1.2, 0.2))
    # Add a table at the bottom of the axes
    cellText.reverse()
    the_table = plt.table(cellText=cellText,
                          rowLabels=rowLabels,
                          colLabels=colLabels, loc='bottom')
Esempio n. 10
0
def plot_aggregate_results(wf_name, data):

    aggr = lambda results: int(interval_statistics(results if len(results) > 0 else [0.0])[0])
    # aggr = lambda results: len(results)

    data = data[wf_name]

    bins = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15]
    value_map = {b: [] for b in bins}

    for d in data:
        fcount = d["result"]["overall_failed_tasks_count"]
        makespan = d["result"]["makespan"]
        value_map[fcount].append(makespan)

    values = [bin for bin, values in sorted(value_map.items(), key=lambda x: x[0]) for _ in values]



    plt.grid(True)

    n, bins, patches = pylab.hist(values, bins, histtype='stepfilled')
    pylab.setp(patches, 'facecolor', 'g', 'alpha', 0.75)


    values = [aggr(values) for bin, values in sorted(value_map.items(), key=lambda x: x[0])]
    rows = [[str(v) for v in values]]

    the_table = plt.table(cellText=rows,
                      rowLabels=None,
                      colLabels=bins,
                      loc='bottom')

    pass
Esempio n. 11
0
def _create_summary_table(series_map, bins=None, **kwargs):

    rows = []
    row_labels = []
    column_labels = ['Total', 'Not Null', '% Shown']
    for group, srs in series_map.iteritems():

        total_num = len(srs)
        not_null = len(srs[pd.notnull(srs)])

        if bins is not None:
            not_shown = len(srs[(pd.isnull(srs)) | (srs > max(bins)) | (srs < min(bins))])
        else:
            not_shown = len(srs[(pd.isnull(srs))])

        percent_shown = (total_num - not_shown) / total_num * 100.0 if total_num > 0 else 0

        pct_string = "{number:.{digits}f}%".format(number=percent_shown, digits=1)

        row_labels.append(group)
        rows.append([total_num, not_null, pct_string])

    table = plt.table(cellText=rows,
                      rowLabels=row_labels,
                      colLabels=column_labels,
                      colWidths=[0.08] * 3,
                      loc='upper center')

    _make_table_pretty(table, **kwargs)

    return table
Esempio n. 12
0
    def __init__(self):

        self.fig = plt.figure(figsize=(5, 5))
        ax = self.fig.add_subplot(1, 1, 1)
        ax.set_aspect("equal")
        ax.set_axis_off()
        self.fig.subplots_adjust(0.0, 0.0, 1, 1)
        
        data = np.repeat(np.arange(1, 10)[:, None], 9, axis=1)
        
        table = plt.table(cellText=data, loc="center", cellLoc="center")
        table.auto_set_font_size(False)
        table.set_fontsize(20)
        
        for v in np.arange(0.05, 1, 0.3):
            line1 = plt.Line2D([v, v], [0.05, 0.95], lw=2, color="k")
            line2 = plt.Line2D([0.05, 0.95], [v, v], lw=2, color="k")
            for line in (line1, line2):
                line.set_transform(ax.transAxes)
                ax.add_artist(line)
                
        self.cells = table._cells
            
        for loc, cell in self.cells.iteritems():
            cell.set_width(0.1)
            cell.set_height(0.1)
            cell.set_edgecolor("#AAAAAA")
            
        self.current_pos = (0, 0)
        self.set_current_cell((0, 0))
        self.setted_cells = {}
        self.solver = SudokuSolver()
        self.calc_solution()
        self.fig.canvas.mpl_connect("key_press_event", self.on_key)
Esempio n. 13
0
def main():
    tables = []
    fh = open(args.input_file, "r")
    for row in csv.reader(fh, delimiter='\t'):
        if (row[2] != "sRNA") and (row[0] == "group_28"):
            datas = row[3].split(";")
            gos = []
            for data in datas:
                gos.append(data.split("(")[0])
            tables.append([row[1], row[2]])
    plt.figure(figsize=(25, 10))
    columns = ["name", "number"]
    plt.table(cellText=tables,
              colLabels=columns,
              loc='bottom')
    plt.savefig("test.png")    
Esempio n. 14
0
 def __init__(self, _title, _ylabel, row_labels, col_labels, table_data, save_fn=None):
     assert len(table_data) == len(row_labels)
     assert len(table_data[0]) == len(col_labels)
     fig = plt.figure(figsize=(6, 6))
     ax = fig.add_subplot(111)
     #
     bar_width = 0.5
     ind = [bar_width / 2 + i for i in xrange(len(col_labels))]
     #
     bar_data = table_data[:]
     bar_data.reverse()
     y_offset = np.array([0.0] * len(col_labels))
     for i, row_data in enumerate(bar_data):
         plt.bar(ind, row_data, bar_width, bottom=y_offset, color=clists[i])
         y_offset = y_offset + row_data
     ax.set_xlim(0, len(ind))
     #
     formated_table_data = []
     for r in table_data:
         formated_table_data.append(['{:,}'.format(x) for x in r])
     table = plt.table(cellText=formated_table_data, colLabels=col_labels, rowLabels=row_labels, loc='bottom')
     table.scale(1, 2)
     #
     plt.subplots_adjust(left=0.2, bottom=0.2)
     plt.ylabel(_ylabel)
     ax.yaxis.set_major_formatter(tkr.FuncFormatter(comma_formating))  # set formatter to needed axis
     plt.xticks([])
     plt.title(_title)
     if save_fn:
         plt.savefig('%s/%s.pdf' % (save_dir, save_fn))
     plt.show()
Esempio n. 15
0
    def to_PNG(self, OutputName='TLD.png', title='Trip-Length Distribution',
                   ylabel='Trips', units='',
                   legend=False, table=False, table_font_colors=True,
                   prefixes='', suffixes='',
                   *args, **kwargs):
        '''Produces a graph from TLD, all columns together.
        Includes average distance.
            prefixes         - to prepend to each column. Use as a marker.
            suffixes         - to append to each column. Use as a marker.
        '''

        if prefixes:
            try:
                self.columns = [prefix+col for col,prefix in zip(self.columns,prefixes)]
            except:
                raise ValueError("prefixes must have the same length as df.columns.")

        if suffixes:
            try:
                self.columns = [col+sufix for col,sufix in zip(self.columns,suffixes)]
            except:
                raise ValueError("suffixes must have the same length as df.columns.")

        if duplicates_in_list(self.columns):
            raise ValueError("Duplicate names in DataFrame's columns.")

        plt.clf()
        axs_subplot = self.plot(title=title, legend=legend)
        line_colors = [line.get_color() for line in axs_subplot.lines]

        if legend:
            lgd = plt.legend(loc='upper center', bbox_to_anchor=(0.5, -0.1),
                              fancybox=True, ncol=len(TLD.columns))
        plt.xlabel('Dist')
        plt.ylabel(ylabel)

        if units:
            col_label = 'Avg Dist ({})'.format(units)
        else:
            col_label = 'Avg Dist'

        if table:
            table = plt.table(
                cellText=[['{:,.2f}'.format(dist)] for dist in list(self.avgdist)],
                colWidths = [0.1],
                rowLabels=[' {} '.format(col) for col in self],
                colLabels=[col_label],
                loc='upper right')
            #table.set_fontsize(16)
            table.scale(2, 2)

        if table and table_font_colors:
            for i in range(len(line_colors)):
                #table.get_celld()[(i+1, -1)].set_edgecolor(line_colors[i])
                table.get_celld()[(i+1, -1)].set_text_props(color=line_colors[i])

        oName = OutputName
        plt.savefig(oName, bbox_inches='tight')
        plt.close()
def plot_results(x_axis, y_axis, x_min, x_max, labels):
    try:
        y_axis[0][0]
    except IndexError:
        # Convert 1D list to 2D
        y_axis = [y_axis]

    colors = ('blue', 'green', 'red', 'cyan', 'magenta', 'yellow', 'black')

    # Calculate means
    y_axis_means = []
    for dataset in y_axis:
        dataset_mean=[]
        for group_no in range(x_max - x_min + 1):
            group = dataset[group_no::x_max - x_min + 1]
            mean = sum(group) / len(group)
            dataset_mean.append(mean)
        y_axis_means.append(dataset_mean)

    fig, ax = plt.subplots()

    # Plot datapoints
    for color, label, dataset in zip(colors, labels, y_axis):
        ax.plot(x_axis, dataset, color=color, marker='.', linestyle=' ', alpha=0.3, label='{} datapoints'.format(label))

    # Plot mean
    for color, label, dataset_mean in zip(colors, labels, y_axis_means):
        ax.plot(x_axis[:x_max - x_min + 1], dataset_mean, color=color, linestyle='-', label='{} mean'.format(label))

    plt.ylabel("Recognition rate")
    plt.xlabel("Number of training")
    ax.legend(loc='lower right')
    ax.axis([x_min - 1, x_max + 1, 0, 1])
    plt.grid(True)

    # Add a table at the bottom of the axes
    plt.table(
        cellText=numpy.around(y_axis_means, decimals=2),
        rowLabels=labels,
        colLabels=range(x_min, x_max+1),
        loc='bottom',
        bbox=[0.20, -0.6, 0.75, 0.3]
    )
    plt.subplots_adjust(bottom=0.4)

    plt.show()
Esempio n. 17
0
def plot_metric_single_value(stats_desc, outdir, num_phases):
    """Plot chart and save it as PNG file"""
    matrix = None
    if stats_desc == "average":
        matrix = AVG_TABLE
    elif stats_desc == "90th":
        matrix = Nth_TABLE
    elif stats_desc == "absolute_time":
        matrix = TIME_TABLE

    if len(matrix) > 0:
        fig = figure()
        ax = fig.add_subplot(1, 1, 1)
        ax.xaxis.set_visible(False)
        ax.yaxis.set_visible(False)
        ax.set_title('{0}_Value'.format(stats_desc))

        table_vals = []
        col_labels = []
        row_labels = []
        for k in matrix.iterkeys():
            temp_list = []
            for i in range(num_phases):
                if  i in matrix[k].keys():
                    temp_list.append(matrix[k][i])
                else:
                    temp_list.append(None)

            table_vals.append(temp_list)
            col_labels.append(k)

        invert_table = []
        for i in range(len(table_vals[0])):
            temp_list = []
            for j in range(len(table_vals)):
                temp_list.append(table_vals[j][i])
            invert_table.append(temp_list)

        for i in range(num_phases):
            row_labels.append("P %d" % (i))

        table(cellText=invert_table, colWidths = [0.2]*len(col_labels), rowLabels=row_labels,
              colLabels=col_labels, loc='center')

        fig.savefig('{0}/zz-{1}_value.png'.format(outdir, stats_desc), dpi=300)
Esempio n. 18
0
def test3():
    cell_text = []
    for i in range(10):
        cell_text.append(np.linspace(0,i,10))

    the_table = plt.table(cellText=cell_text,
                          rowLabels=["%s row" % i for i in range(10)],
                          colLabels=["%s col" % i for i in range(10)])
    plt.show()
Esempio n. 19
0
def summary(data):
    data_win = data[data.exit_profit>0]
    data_lose = data[data.exit_profit<0]
    zero_df = data[data.exit_profit==0]
    total_num = len(data)
    av_period = data['period'].mean()
    plt.figure()
    rows = [
            "Overall Profits: ", 
            "Overall Loss: ", 
            "Net Profits: ", 
            "Number of Transaction: ", 
            "Number of Winning Trades: ",
            "Number of Losing Trades: ",
            "Average Profit:",
            "AV Profits / AV Loss: ", 
            "Winning Percentage: ",
            "Stock Holding Period: " 
           ]

    cell_text=[
                [str(data_win.exit_profit.sum() * 300)],
                [str(data_lose.exit_profit.sum() * 300)],
                [str((data.exit_profit.sum()) * 300)],
                [str(total_num)],
                [str(len(data_win))],
                [str(len(data_lose))], 
                [str(data_win.exit_profit.sum()/ total_num*300)],
                [str(abs(data_win.exit_profit.sum()/len(data_win) / (data_lose.exit_profit.sum()/len(data_lose))))],
                [str(len(data_win)/float(total_num)*100) + "%" ], 
                [str(av_period)]
              ]
    columns=(['Summary'])
    assert len(cell_text) == len(rows)
    # Add a table at the bottom of the axes

    the_table = plt.table(cellText=cell_text,
                      colWidths = [0.4],
                      rowLabels=rows,
                      colLabels=columns,
                      loc='center right', fontsize=14)
    plt.text(12,3.4,'Table Title',size=8)
    six.print_("******************************************")
    six.print_("总盈利: " + str(data_win.exit_profit.sum() * 300))
    six.print_("总亏损: " + str(data_lose.exit_profit.sum() * 300))
    six.print_("总利润: " + str((data.exit_profit.sum()) * 300))
    six.print_("******************************************")
    six.print_("交易次数: " + str(total_num))
    six.print_("盈利次数: " + str(len(data_win)))
    six.print_("亏损次数: " + str(len(data_lose)))
    six.print_("平均利润: " + str(data_win.exit_profit.sum()/ total_num*300))
    six.print_("盈亏比: " + str(abs(data_win.exit_profit.sum()/len(data_win) / (data_lose.exit_profit.sum()/len(data_lose)))))
    six.print_("胜率: " + str(len(data_win)/float(total_num)*100) + "%" )
    six.print_("平均持仓周期: " + str(av_period))
    six.print_("******************************************")
Esempio n. 20
0
def test2():
    data = [[ 66386, 174296,  75131, 577908,  32015],
            [ 58230, 381139,  78045,  99308, 160454],
            [ 89135,  80552, 152558, 497981, 603535],
            [ 78415,  81858, 150656, 193263,  69638],
            [139361, 331509, 343164, 781380,  52269]]

    columns = ('Freeze', 'Wind', 'Flood', 'Quake', 'Hail')
    rows = ['%d year' % x for x in (100, 50, 20, 10, 5)]

    values = np.arange(0, 2500, 500)
    value_increment = 1000

    # Get some pastel shades for the colors
    # 得到5行,每行是一个四维向量,是rgba吗?
    colors = plt.cm.BuPu(np.linspace(0, 0.5, len(rows)))
    n_rows = len(data)

    index = np.arange(len(columns)) + 0.3
    bar_width = 0.4

    # Initialize the vertical-offset for the stacked bar chart.
    y_offset = np.zeros(len(columns))

    # Plot bars and create text labels for the table
    cell_text = []
    for row in range(n_rows):
        plt.bar(index, data[row], bar_width, bottom=y_offset, color=colors[row])
        y_offset = y_offset + data[row]
        cell_text.append(['%1.1f' % (x / 1000.0) for x in y_offset])
    # Reverse colors and text labels to display the last value at the top.
    # 还有这种写法
    colors = colors[::-1]
    cell_text.reverse()

    # Add a table at the bottom of the axes
    # cell_text是一个二维数组,rowLabels是行名,colLabels是行名,rowColours是行的颜色
    the_table = plt.table(cellText=cell_text,
                          rowLabels=rows,
                          rowColours=colors,
                          colLabels=columns,
                          loc='bottom')

    # Adjust layout to make room for the table:
    plt.subplots_adjust(left=0.2, bottom=0.2)

    plt.ylabel("Loss in ${0}'s".format(value_increment))
    #设置了y轴的tick的值和label的对应关系,就是说label显示500(由values中取的值),但实际对应的是500000
    plt.yticks(values * value_increment, ['%d' % val for val in values])
    #设置x轴的tick是空,效果上是使用了table的rowLabels
    plt.xticks([])
    plt.title('Loss by Disaster')

    plt.show()
Esempio n. 21
0
def plot_matrix(matrix, columns = None, rows = None, title = None):
	# Add a table at the bottom of the axes
	print(title)
	fig = plt.figure()
	ax = fig.add_subplot(111)
	ax.xaxis.set_visible(False)
	ax.yaxis.set_visible(False)
	plt.axis('off')
	the_table = plt.table(cellText = matrix, colLabels = columns, rowLabels = rows, loc = "center")

	plt.show()
Esempio n. 22
0
        def plot_mc(self):
                ''''ploteo de la matriz de confusion y de las diversas medidas estadisticas.'''
                conf_arr = self.confusion_matrix
                
                fig = plt.figure()
                plt.clf()
                ax = fig.add_subplot(221)
                ax.set_aspect(1)
                res = ax.imshow(array(conf_arr), cmap=plt.cm.jet, interpolation='nearest')
                nc = self.ncat
                width = len(conf_arr)
                height = len(conf_arr[0])
                for x in xrange(width):
                        for y in xrange(height):
                                ax.annotate(str(conf_arr[x][y]), xy=(y, x),horizontalalignment='center',
                                        verticalalignment='center')
                                        
                cb = fig.colorbar(res)
                plt.title('Matriz de Confusion') 
                plt.xlabel('Referencia') 
                plt.ylabel('Clasificacion') 
                alphabet = '0123-456789'
                alphabeto = '0123N456789'
                plt.xticks(range(width), alphabet[:width])
                plt.yticks(range(height), alphabeto[:height])
                
                cat = self.ncat
                filas =cat*2 + 2
                
                colors = [[(0.5,  1.0, 1.0) for c in range(1)] for r in range(2)]
                colors[0]= [(1., 0., 0.)]
                colors[1]= [(1., 0., 0.)]
                lightgrn = (0.5, 0.8, 0.5)
                etiquetas_fil1 = (u'Coeficiente kappa', u'Fiabilidad global')                                     
                etiquetas_fil = etiquetas_fil1[:filas]
                ax = fig.add_subplot(155 ,frameon=False, xticks=[], yticks=[]) 
                valores=[['%.4f' %(float(self.kappa))],['%.4f' %(self.reliability)]]                       

                plt.table(cellText=valores, rowLabels = etiquetas_fil,loc='upper center',cellColours=colors,rowColours=[lightgrn]*16)
                plt.savefig('confusion_matrix.png', format='png')
                return conf_arr
Esempio n. 23
0
    def plottalo_bello(self):

        columns = ['Jan', 'Feb', 'Mar', 'Apr', 'May', 'Jun', 'Jul', 'Aug', 'Sep', 'Oct', 'Nov', 'Dec']
        rows = ['%d RP' % x for x in (1000, 500, 200, 100, 50, 25)]

        people_affected_rp = []
        for cada in persone_pesi.itervalues():
            myRoundedList = [round(elem, 2) for elem in cada.values()]
            people_affected_rp.append(myRoundedList)

        print people_affected_rp

        matrice = np.asarray(people_affected_rp)
        maximo_y = math.ceil(max(matrice.sum(0))/500)*500
        values = np.arange(0, maximo_y, 100000)
        value_increment = 1

        # Get some pastel shades for the colors
        colors = plt.cm.OrRd(np.linspace(0, 0.5, len(rows)))
        n_rows = len(persone_pesi)

        #index = np.arange(len(columns)) + 0.3
        index = np.arange(len(columns))
        bar_width = 1

        # Initialize the vertical-offset for the stacked bar chart.
        y_offset = np.array([0.0] * len(columns))

        # Plot bars and create text labels for the table
        cell_text = []
        for row in range(n_rows):
            plt.bar(index, people_affected_rp[row], bar_width, bottom=y_offset, color=colors[row])
            y_offset = y_offset + people_affected_rp[row]
            cell_text.append(['%d' % (x) for x in y_offset])
        # Reverse colors and text labels to display the last value at the top.
        colors = colors[::-1]
        cell_text.reverse()

        # Add a table at the bottom of the axes
        the_table = plt.table(cellText=cell_text,
                              rowLabels=rows,
                              rowColours=colors,
                              colLabels=columns,
                              loc ='bottom')

        # Adjust layout to make room for the table:
        plt.subplots_adjust(left=0.2, bottom=0.2)

        plt.ylabel("People at risk per Return Period")
        plt.yticks(values * value_increment), ['%d' % val for val in values]
        plt.xticks([])
        plt.title('People at risk by Return Period in ' + self.admin)
        plt.show()
def create_table(model, model_name, train_num, X, y): 
    all_data = [] #right location
    columns = ['Training set size: %d' % x for x in train_num]
    rows = [ 
      "Training time of classifier     ", \
      "Prediction time for training set", \
      "F1 score for training set       ", \
      "Prediction time for testing set ", \
      "F1 score for testing set        "]
    for num in train_num:
        data = []
        # Split data
        X_train, y_train, X_test, y_test = split_data(X, y, num)
        #"{0:.2f}".format(round(a,2))
        data = [ \
                "{0:.7f}".format(round(train_classifier(model, X_train, y_train),7)), \
                "{0:.7f}".format(round(predict_labels(model, X_train, y_train)[0],7)), \
                "{0:.7f}".format(round(predict_labels(model, X_train, y_train)[1],7)), \
                "{0:.7f}".format(round(predict_labels(model, X_test, y_test)[0],7)), \
                "{0:.7f}".format(round(predict_labels(model, X_test, y_test)[1],7)) \
                ]
        all_data.append(data) 
    #accomodating data
    all_ordered_data = []
    num_cols = len(all_data)
    num_rows = len(all_data[0])
    #loop
    r_count = 0
    while r_count < num_rows: #loops from 0 up to 4
        ordered_data = []
        c_count = 0
        while c_count < num_cols: #visits all_data[0], all_data[1], all_data[2]
            ordered_data.append(all_data[c_count][r_count])
            c_count += 1
        all_ordered_data.append(ordered_data)
        r_count += 1

    #Get some pastel shades for the colors
    colors = plt.cm.BuPu(np.linspace(0, 0.5, len(rows)))
    # Reverse colors and text labels to display the last value at the top.
    colors = colors[::-1]

    #Add a table at the bottom of the axes
    the_table = plt.table(cellText=all_ordered_data,
                          rowLabels=rows,    ##row labels must be length 3 
                          rowColours=colors,
                          colLabels=columns,
                          loc='center')
    #show table
    plt.title('{}'.format(model_name))
    plt.axis('off')
    plt.savefig("table_{}.png".format(model_name)) #k components, where k is clusters
    plt.show()
Esempio n. 25
0
def plotTable(df, title, header=None):

	fig = plt.figure()
	fig.suptitle(title, fontsize="x-large")

	figs.append(fig)
	fignames.append(title)

	if not header:
		tab = plt.table(cellText=df.values,
					# colWidths=[0.08] * len(df.columns),
					loc="center",
					cellLoc='center')
	else:
		tab = plt.table(cellText=df.values,
					# colWidths=[0.08] * len(df.columns),
					loc="center",
					cellLoc='center',
					colLabels=header)

	plt.axis("off")
Esempio n. 26
0
def visualize(avg):
    columns = ['Bayes scores', 'Tree scores']
    rows = [1,2,3,4,5]
    ax = mplot.subplot(111,frame_on=False)
    ax.xaxis.set_visible(False)
    ax.yaxis.set_visible(False)
    table = mplot.table(cellText=avg,
                        colLabels=columns,
                        rowLabels=rows,
                        loc='center')
    mplot.subplots_adjust(left=0.2)
    mplot.show()
Esempio n. 27
0
def bar_sd2(gov_percentage_list, std_list):
    arr_percentages = np.array(gov_percentage_list)
    arr_sds = np.array(std_list)
    arr_100s = np.array([100] * len(std_list))
    # percentages = [43, 23, 55, 32, 31]
    # sds = [12, 15, 13, 9, 10]
    data = [
        (arr_percentages - arr_sds).tolist(),
        (arr_sds).tolist(),
        (arr_sds).tolist(),
        (arr_100s - arr_sds - arr_percentages).tolist(),
    ]

    # data.append([100-num for num in percentages])

    columns = ["R" + str(i + 1) for i in range(len(gov_percentage_list))]
    rows = ["%s" % x for x in ("opp", "opp-sd", "gov-sd", "gov")]

    values = np.arange(0, 110, 10)
    value_increment = 1

    # Get some pastel shades for the colors
    colors = plt.cm.BuPu(np.linspace(0, 0.5, len(rows)))
    n_rows = len(data)

    index = np.arange(len(columns)) + 0.3
    bar_width = 0.4

    # Initialize the vertical-offset for the stacked bar chart.
    y_offset = np.array([0.0] * len(columns))

    # Plot bars and create text labels for the table
    cell_text = []
    for row in range(n_rows):
        plt.bar(index, data[row], bar_width, bottom=y_offset, color=colors[row])
        y_offset = y_offset + data[row]
        cell_text.append(["%1.1f" % (x) for x in y_offset])
    # Reverse colors and text labels to display the last value at the top.
    colors = colors[::-1]
    cell_text.reverse()

    # Add a table at the bottom of the axes
    the_table = plt.table(cellText=cell_text, rowLabels=rows, rowColours=colors, colLabels=columns, loc="bottom")

    # Adjust layout to make room for the table:
    plt.subplots_adjust(left=0.2, bottom=0.2)

    plt.ylabel("percentage")
    plt.yticks(values * value_increment, ["%d" % val for val in values])
    plt.xticks([])
    plt.title("Percentage for gov-win")

    plt.show()
Esempio n. 28
0
def plot(x, y, o):
    plt.rcdefaults()
    fig = plt.figure()
    ax = fig.add_subplot(111)
    ax.plot(x, y, '.')
    ax.set_yscale('log')
    ax.set_xlabel(r'$\overline{m}$ (mag)')
    ax.set_ylabel(r'$\sigma_{m}$ (mag)')
    ax.set_xlim((min(x)*(1-0.05), max(x)*(1+0.05)))
    ax.set_ylim((min(y)*(1-0.05), max(y)*(1+0.05)))
    ax.xaxis.set_minor_locator(MultipleLocator(0.5))
    plt.table(cellText=[['N', r'$\overline{{\sigma}}$'],
                        [1, '{:.3f}'.format(y[0])],
                        [5, '{:.3f}'.format(np.average(y[0:5]))],
                        [10, '{:.3f}'.format(np.average(y[0:10]))],
                        [25, '{:.3f}'.format(np.average(y[0:25]))],
                        [50, '{:.3f}'.format(np.average(y[0:50]))],
                        [100, '{:.3f}'.format(np.average(y[0:100]))]],
              colWidths=[0.1, 0.1],
              loc='center left')
    fig.savefig(o, bbox_inches='tight', pad_inches=0.05)
    plt.close(fig)
Esempio n. 29
0
    def create_table(self, data=None):
        cell_text = self.create_cell_text(self)
        row_labels = self.create_row_labels()
        column_labels = ['Starting Capital', 'Number of Trades', 'Ending Capital', 'Annualized Return']
        colors = self.create_table_colors(row_labels, column_labels, cell_text)
        table = plt.table(cellText=cell_text, cellColours=colors[0],
                          rowColours=colors[1], rowLabels=row_labels,
                          colColours=colors[2], colLabels=column_labels,
                          bbox=[0.0, -1.35, 1.0, 1.0],
                          cellLoc='center')

        table.set_fontsize(60)
        return table
Esempio n. 30
0
def printLegend(rowLabels,colLabels,params):
    fig = plt.figure()
    col_labels=colLabels
    row_labels=rowLabels
    table_vals=params
    the_table = plt.table(cellText=table_vals,
    colWidths = [0.2]*4,
    rowLabels=row_labels,
    colLabels=col_labels,
    loc='center')
    plt.text(12,3.4,'Table Title',size=8)
    plt.title('Legend for expiriments')
    plt.show()
param_rows.append("SiO$_2$/Gr: SiO$_2$ Fit")
# param_rows.append("SiO$_2$/Gr/Ga$_2$O$_3$: SiO$_2$ Fit")
param_rows.append("SiO$_2$/Gr/Ga$_2$O$_3$: Ga$_2$O$_3$ Fit")
param_rows.append("SiO$_2$/Gr/Ga$_2$O$_3$: Generic single mode fit")

param_list = []
# param_list.append(tuple(["%0.03f $\pm$ %0.03f" % (params_exp[i], math.sqrt(covar_exp[i,i])) for i in range(1)]))
param_list.append(tuple(["%0.03f $\pm$ %0.03f" % (obj1_params_exp_sio2[i], math.sqrt(obj1_covar_exp_sio2[i,i])) for i in range(1)] + ["-"]))
# param_list.append(tuple(["%0.03f $\pm$ %0.03f" % (obj2_params_exp_sio2[i], math.sqrt(obj2_covar_exp_sio2[i,i])) for i in range(1)] + ["-"]))
param_list.append(tuple(["%0.03f $\pm$ %0.03f" % (obj2_params_exp_ga2o3[i], math.sqrt(obj2_covar_exp_ga2o3[i,i])) for i in range(1)] + ["-"]))
param_list.append(tuple(["%0.03f $\pm$ %0.03f" % (obj2_params_exp_generic[i], math.sqrt(obj2_covar_exp_generic[i,i])) for i in range(2)]))

exp_ax.set_title(r"Devs4_03 Run04; Bare graphene & Ga$_2$O$_3$ covered graphene"+"\n"+r"After Ga$_2$O$_3$ deposition")
plt.table(cellText=param_list,
        rowLabels=param_rows,
        colLabels=param_headers,
        # bbox=(1.175,0.6,1.0,0.4))
        bbox=(1.525,0.6,0.6,0.4))
        # bbox=(1.175,0.6,0.7,0.4))

saveLoc = saveTarget + "Phonons %0.02f" % temps1[0] + "K-%0.02f" % temps1[-1] + "K %0.01fV" % vgs1[0] + "-%0.01fV" % vgs1[-1]
integer = 0
if os.path.exists(saveLoc + ".png"):
    saveTarget = saveLoc + str(integer) + ".png"
    while os.path.exists(saveTarget):
        integer += 1
        saveTarget = saveLoc + str(integer) + ".png"
else:
    saveTarget = saveLoc + str(integer) + ".png"
plt.savefig(saveTarget, bbox_inches="tight")
Esempio n. 32
0
    def _get_fit(self, per_loc, per_admit, per_cc, LOS_cc, LOS_nc, per_vent,
                        ppe_GLOVE_SURGICAL, ppe_GLOVE_EXAM_NITRILE, ppe_GLOVE_GLOVE_EXAM_VINYL,
                        ppe_MASK_FACE_PROCEDURE_ANTI_FOG, ppe_MASK_PROCEDURE_FLUID_RESISTANT, 
                        ppe_GOWN_ISOLATION_XLARGE_YELLOW, ppe_MASK_SURGICAL_ANTI_FOG_W_FILM,
                        ppe_SHIELD_FACE_FULL_ANTI_FOG, ppe_RESPIRATOR_PARTICULATE_FILTER_REG,
                        TimeLag, PopSize, ForecastDays, forecasted_y, focal_loc, fdates,
                        new_cases, model, Forecasted_cases_df_for_download,
                        Forecasted_patient_census_df_for_download,
                        Forecasted_ppe_needs_df_for_download):
        
        
        
        # declare figure object
        fig = plt.figure(figsize=(15, 17))

        # shorten location name if longer than 12 characters
        loc = str(focal_loc)
        if len(loc) > 12:
            loc = loc[:12]
            loc = loc + '...'

        #### Inclusion of time lag
        # time lag is modeled as a Poisson distributed
        # random variable with a mean chosen by the user (TimeLag)
        new_cases_lag = []
        x = list(range(len(forecasted_y)))
        for i in new_cases:
            lag_pop = i*poisson.pmf(x, TimeLag)
            new_cases_lag.append(lag_pop)

        # Declare a list to hold time-staggered lists
        # This will allow the time-lag effects to
        # be summed across rows (days)
        lol = []
        for i, daily_vals in enumerate(new_cases_lag):
            # number of indices to pad in front
            fi = [0]*i
            diff = len(new_cases) - len(fi)
            # number of indices to pad in back
            bi = [0]*diff
            ls = list(fi) + list(daily_vals) + list(bi)
            lol.append(np.array(ls))

        # convert the list of time-staggered lists to an array
        ar = np.array(lol)

        # get the time-lagged sum of visits across days
        ts_lag = np.sum(ar, axis=0)
        # upper truncate for the number of days in observed y values
        ts_lag = ts_lag[:len(new_cases)]
        ts_lag = ts_lag[:len(new_cases)]


        p = 0.1
        n_cc = LOS_cc*10
        n_nc = LOS_nc*10

        # get the binomial random variable properties
        rv_nc = binom(n_nc, p)
        # Use the binomial cumulative distribution function
        p_nc = rv_nc.cdf(np.array(range(1, len(fdates)+1)))

        # get the binomial random variable properties
        rv_cc = binom(n_cc, p)
        # Use the binomial cumulative distribution function
        p_cc = rv_cc.cdf(np.array(range(1, len(fdates)+1)))



        # Initiate lists to hold numbers of critical care and non-critical care patients
        # who are expected as new admits (index 0), as 1 day patients, 2 day patients, etc.
        LOScc = np.zeros(len(fdates))
        LOScc[0] = ts_lag[0] * (0.01 * per_cc) * (0.01 * per_admit) * (0.01 * per_loc)
        LOSnc = np.zeros(len(fdates))
        LOSnc[0] =  ts_lag[0] * (1-(0.01 * per_cc)) * (0.01 * per_admit) * (0.01 * per_loc)

        total_nc = []
        total_cc = []

        # Roll up patient carry-over into lists of total critical care and total
        # non-critical patients expected
        for i, day in enumerate(fdates):
            LOScc = LOScc * (1 - p_cc)
            LOSnc = LOSnc * (1 - p_nc)

            LOScc = np.roll(LOScc, shift=1)
            LOSnc = np.roll(LOSnc, shift=1)

            LOScc[0] = ts_lag[i] * (0.01 * per_cc) * (0.01 * per_admit) * (0.01 * per_loc)
            LOSnc[0] = ts_lag[i] * (1 - (0.01 * per_cc)) * (0.01 * per_admit) * (0.01 * per_loc)

            total_nc.append(np.sum(LOSnc))
            total_cc.append(np.sum(LOScc))

        # # Plot the critical care and non-critical care patient census over the
        # # forecasted time frame
        plt.plot(fdates[-(ForecastDays+1):], total_cc[-(ForecastDays+1):], c='m', label='Critical care', linewidth=3)
        plt.plot(fdates[-(ForecastDays+1):], total_nc[-(ForecastDays+1):], c='0.4', label='Non-critical care', linewidth=3)

            
        
        
        
        ####################### PPE ##################################
        ax = plt.subplot2grid((6, 4), (4, 0), colspan=2, rowspan=2)
        
        #### Construct arrays for critical care and non-critical care patients
        
        # All covid patients expected in house on each forecasted day. PUI is just a name here
        
        PUI_COVID = np.array(total_nc) + np.array(total_cc) 
        # Preparing to add new visits, fraction of new cases visiting your hospital = 0.01 * per_loc 
        new_visits_your_hospital = ts_lag * (0.01 * per_loc)
        # Add number of new visits to number of in house patients
        PUI_COVID = PUI_COVID + new_visits_your_hospital
        
        glove_surgical = np.round(ppe_GLOVE_SURGICAL * PUI_COVID).astype('int')
        glove_nitrile = np.round(ppe_GLOVE_EXAM_NITRILE * PUI_COVID).astype('int')
        glove_vinyl = np.round(ppe_GLOVE_GLOVE_EXAM_VINYL * PUI_COVID).astype('int')
        face_mask = np.round(ppe_MASK_FACE_PROCEDURE_ANTI_FOG * PUI_COVID).astype('int')
        procedure_mask = np.round(ppe_MASK_PROCEDURE_FLUID_RESISTANT * PUI_COVID).astype('int')
        isolation_gown = np.round(ppe_GOWN_ISOLATION_XLARGE_YELLOW * PUI_COVID).astype('int')
        surgical_mask = np.round(ppe_MASK_SURGICAL_ANTI_FOG_W_FILM * PUI_COVID).astype('int')
        face_shield = np.round(ppe_SHIELD_FACE_FULL_ANTI_FOG * PUI_COVID).astype('int')
        respirator = np.round(ppe_RESPIRATOR_PARTICULATE_FILTER_REG * PUI_COVID).astype('int')
        
        
        ppe_ls =[[glove_surgical, 'GLOVE SURGICAL', 'r'],
             [glove_nitrile, 'GLOVE EXAM NITRILE', 'orange'],
             [glove_vinyl, 'GLOVE EXAM VINYL', 'goldenrod'],
             [face_mask, 'MASK FACE PROCEDURE ANTI FOG', 'limegreen'],
             [procedure_mask, 'MASK PROCEDURE FLUID RESISTANT', 'green'],
             [isolation_gown, 'GOWN ISOLATION XLARGE YELLOW', 'cornflowerblue'],
             [surgical_mask, 'MASK SURGICAL ANTI FOG W/FILM', 'blue'],
             [face_shield, 'SHIELD FACE FULL ANTI FOG', 'plum'],
             [respirator, 'RESPIRATOR PARTICULATE FILTER REG', 'darkviolet']]
        
        linestyles = ['dashed', 'dotted', 'dashdot', 
                      'dashed', 'dotted', 'dashdot',
                      'dotted', 'dashed', 'dashdot']
        
        for i, ppe in enumerate(ppe_ls):
            plt.plot(fdates[-(ForecastDays+1):], ppe[0][-(ForecastDays+1):], c=ppe[2], label=ppe[1], linewidth=2, ls=linestyles[i])
    
        plt.title('Forecasted PPE needs', fontsize = 16, fontweight = 'bold')
        #if log_scl == True:
        #    plt.yscale('log')
        
        
        ax = plt.gca()
        temp = ax.xaxis.get_ticklabels()
        temp = list(set(temp) - set(temp[::12]))
        for label in temp:
            label.set_visible(False)
            
        leg = ax.legend(handlelength=0, handletextpad=0, fancybox=True,
                        loc='best', frameon=True, fontsize=8)

        for line,text in zip(leg.get_lines(), leg.get_texts()):
            text.set_color(line.get_color())

        for item in leg.legendHandles: 
            item.set_visible(False)
        
        plt.ylabel('PPE Supplies', fontsize=14, fontweight='bold')
        plt.xlabel('Date', fontsize=14, fontweight='bold')
        
        
        
        
        
        
        ax = plt.subplot2grid((6, 4), (4, 2), colspan=2, rowspan=2)
        ax.axis('off')
        #ax.axis('tight')
        
        #### Construct arrays for critical care and non-critical care patients
        #PUI_COVID = np.array(total_nc) + np.array(total_cc)
        PUI_COVID = PUI_COVID[-(ForecastDays+1):]
        
        glove_surgical = np.round(ppe_GLOVE_SURGICAL * PUI_COVID).astype('int')
        glove_nitrile = np.round(ppe_GLOVE_EXAM_NITRILE * PUI_COVID).astype('int')
        glove_vinyl = np.round(ppe_GLOVE_GLOVE_EXAM_VINYL * PUI_COVID).astype('int')
        face_mask = np.round(ppe_MASK_FACE_PROCEDURE_ANTI_FOG * PUI_COVID).astype('int')
        procedure_mask = np.round(ppe_MASK_PROCEDURE_FLUID_RESISTANT * PUI_COVID).astype('int')
        isolation_gown = np.round(ppe_GOWN_ISOLATION_XLARGE_YELLOW * PUI_COVID).astype('int')
        surgical_mask = np.round(ppe_MASK_SURGICAL_ANTI_FOG_W_FILM * PUI_COVID).astype('int')
        face_shield = np.round(ppe_SHIELD_FACE_FULL_ANTI_FOG * PUI_COVID).astype('int')
        respirator = np.round(ppe_RESPIRATOR_PARTICULATE_FILTER_REG * PUI_COVID).astype('int')
        
        
        ppe_ls =[[glove_surgical, 'GLOVE SURGICAL', 'r'],
             [glove_nitrile, 'GLOVE EXAM NITRILE', 'orange'],
             [glove_vinyl, 'GLOVE EXAM VINYL', 'goldenrod'],
             [face_mask, 'MASK FACE PROCEDURE ANTI FOG', 'limegreen'],
             [procedure_mask, 'MASK PROCEDURE FLUID RESISTANT', 'green'],
             [isolation_gown, 'GOWN ISOLATION XLARGE YELLOW', 'cornflowerblue'],
             [surgical_mask, 'MASK SURGICAL ANTI FOG W/FILM', 'blue'],
             [face_shield, 'SHIELD FACE FULL ANTI FOG', 'plum'],
             [respirator, 'RESPIRATOR PARTICULATE FILTER REG', 'darkviolet']]
        
        
        if len(loc) > 12:
            loc = loc[:12]
            loc = loc + '...'

        col_labels = [ppe_ls[0][1], ppe_ls[1][1], ppe_ls[2][1], 
                      ppe_ls[3][1], ppe_ls[4][1], ppe_ls[5][1],
                      ppe_ls[6][1], ppe_ls[7][1], ppe_ls[8][1]]

        row_labels = fdates.tolist()        
        row_labels = row_labels[-(ForecastDays+1):]
        
        table_vals = []
        cclr_vals = []
        rclr_vals = []
        
        Forecasted_ppe_needs_df_for_download = pd.DataFrame(columns = ['date'] + col_labels)
        for i in range(len(row_labels)):
                
            cell = [ppe_ls[0][0][i], ppe_ls[1][0][i], ppe_ls[2][0][i], 
                      ppe_ls[3][0][i], ppe_ls[4][0][i], ppe_ls[5][0][i],
                      ppe_ls[6][0][i], ppe_ls[7][0][i], ppe_ls[8][0][i]]
            
            df_row = [row_labels[i]]
            df_row.extend(cell)
            
            labs = ['date'] + col_labels
            temp = pd.DataFrame([df_row], columns=labs)
            Forecasted_ppe_needs_df_for_download = pd.concat([Forecasted_ppe_needs_df_for_download, temp])
            
            if i == 0:
                rclr = '0.8'
                cclr = ['0.8', '0.8', '0.8', '0.8', '0.8', '0.8', '0.8', '0.8', '0.8']
            else:
                rclr = 'w'
                cclr = ['w', 'w', 'w', 'w', 'w', 'w', 'w', 'w', 'w']
                
            table_vals.append(cell)
            cclr_vals.append(cclr)
            rclr_vals.append(rclr)
            
        #ncol = 9
        cwp = 0.15
        lim = 15
            
        the_table = plt.table(cellText=table_vals[0:lim],
                        colWidths=[cwp]*9,
                        rowLabels=row_labels[0:lim],
                        colLabels=None,
                        cellLoc='center',
                        loc='upper center',
                        cellColours=cclr_vals[0:lim],
                        rowColours =rclr_vals[0:lim])
        
        the_table.auto_set_font_size(True)
        the_table.scale(1, 1.32)
        
        for i in range(len(ppe_ls)):
            clr = ppe_ls[i][2]
            for j in range(lim):
                the_table[(j, i)].get_text().set_color(clr)
        
        # set values for diagonal column labels
        hoffset = -0.3 #find this number from trial and error
        voffset = 1.0 #find this number from trial and error
        col_width = [0.06, 0.09, 0.09, 0.12, 0.133, 0.138, 0.128, 0.135, 0.142]
        
        col_labels2 =[['GLOVE SURGICAL', 'r'],
             ['GLOVE EXAM NITRILE', 'orange'],
             ['GLOVE GLOVE EXAM VINYL', 'goldenrod'],
             ['MASK FACE PROC. A-FOG', 'limegreen'],
             ['MASK PROC. FLUID RES.', 'green'],
             ['GOWN ISO. XL YELLOW', 'cornflowerblue'],
             ['MASK SURG. ANTI FOG W/FILM', 'blue'],
             ['SHIELD FACE FULL ANTI FOG', 'plum'],
             ['RESP. PART. FILTER REG', 'darkviolet']]
        
        count=0
        for i, val in enumerate(col_labels2):
            ax.annotate('  '+val[0], xy=(hoffset + count * col_width[i], voffset),
            xycoords='axes fraction', ha='left', va='bottom', 
            rotation=-25, size=8, c=val[1])
            count+=1
        
        
        plt.subplots_adjust(left=None, bottom=None, right=None, top=None, wspace=1.1, hspace=1.1)
        return Forecasted_cases_df_for_download, Forecasted_patient_census_df_for_download, Forecasted_ppe_needs_df_for_download
# Pyplot style
import matplotlib.pyplot as plt

data_uas = [['Bejo', 70], ['Tejo', 83], ['Cecep', 62], ['Wati', 74],
            ['Karti', 71]]

table = plt.table(cellText=data_uas, loc='center')
table.set_fontsize(14)
table.scale(1, 4)
ax = plt.gca()
ax.axis(False)

plt.show()
Esempio n. 34
0
def chart(consensus, hydro, chain, stru, cd_hit, filename, col):

    minC = 60.0  #min side-chain volume
    maxC = 230.0  #max side-chain volume
    l = len(consensus)
    if col > l: col = l
    k = len(cd_hit)
    rows = int(np.ceil(float(l) / col))  #number of rows

    fig = plt.figure(figsize=(col / 4.0 + 4, rows * (9 + k / 2.0) + 4))

    inchH = 1.0 / (rows * (9 + k / 2.0) + 4)
    colBarH = 3.0 * inchH  #colorbar height
    margin = 2.0 * inchH
    height = 6.0 * inchH  #barchart height
    seqH = (k / 2.0 + 1.0) * inchH  #sequence table height

    inchW = 1.0 / (col / 4.0 + 4)

    wykr = plt.axes([2 * inchW, 1 - colBarH, 1 - 4 * inchW, colBarH])
    wykr.set_title("MSA Visualization", y=0.4)
    plt.axis('off')

    #side chain volume colorbar
    m = cm.ScalarMappable(cmap=cm.autumn)
    m.set_array(np.array([minC, maxC]))
    cbr = plt.colorbar(m, orientation='horizontal', fraction=0.4)
    cbr.set_label('Side Chain Volume')

    width = 1
    widths = [1.0 / col] * col
    for r in xrange(rows):
        #barchart
        if r == rows - 1:
            tmp = plt.axes([
                2 * inchW, 1 -
                (r + 1) * (margin + height + seqH) - colBarH + seqH,
                (1 - 4 * inchW) * (l - col * (rows - 1)) / float(col), height
            ],
                           xlabel="Amino Acid",
                           ylabel='Hydrophobicity')
            plt.axis([(rows - 1) * col - 0.5, l - 0.5, -5,
                      5])  #min and max of the x and y axes
            plt.xticks(range(col * (rows - 1), l, 5))
        else:
            tmp = plt.axes([
                2 * inchW, 1 - (r + 1) * (margin + height + seqH) - colBarH +
                seqH, 1 - 4 * inchW, height
            ],
                           xlabel="Amino Acid",
                           ylabel='Hydrophobicity')
            plt.axis([r * col - 0.5, (r + 1) * col - 0.5, -5,
                      5])  #min and max of the x and y axes
            plt.xticks(range(col * r, (r + 1) * col, 5))

        for i in xrange(col):
            if r == rows - 1 and i == l - col * (rows - 1):
                break  #break if last chart is shorter
            c = (1, (chain[col * r + i] - minC) / (maxC - minC), 0)  #bar color
            tmp.bar(col * r + i,
                    hydro[col * r + i],
                    width,
                    color=c,
                    align='center',
                    linewidth=1)

        if r == 0:
            #consensus table
            tabCons = plt.table(cellText=[consensus[col * r:col * (r + 1)]],
                                cellLoc='center',
                                rowLabels=["consensus"],
                                colWidths=widths,
                                bbox=[0, 1.07, 1, 0.04])

            #structure table
            tabStru = plt.table(cellText=[stru[col * r:col * (r + 1)]],
                                cellLoc='center',
                                rowLabels=["structure"],
                                colWidths=widths,
                                bbox=[0, 1.02, 1, 0.04])

            #sequence table
            text = []
            labels = []
            for key in sorted(cd_hit.keys()):
                text.append(cd_hit[key][col * r:col * (r + 1)])
                if len(key) > 15: labels.append(key[:15] + ": ")
                else: labels.append(key + ": ")
            tabCdHit = plt.table(cellText=text,
                                 cellLoc='center',
                                 colWidths=widths,
                                 rowLabels=labels,
                                 bbox=[0, -(k / 2.0 + 1.0) / 6.0, 1, k / 12.0])

        elif r == rows - 1:
            widths = [1.0 / col] * (l - col * (rows - 1))

            #consensus table
            tabCons = plt.table(cellText=[consensus[col * (rows - 1):]],
                                cellLoc='center',
                                colWidths=widths,
                                bbox=[0, 1.07, 1, 0.04])

            #structure table
            tabStru = plt.table(cellText=[stru[col * (rows - 1):]],
                                cellLoc='center',
                                colWidths=widths,
                                bbox=[0, 1.02, 1, 0.04])

            #sequence table
            text = []
            for key in sorted(cd_hit.keys()):
                text.append(cd_hit[key][col * r:col * (r + 1)])
            tabCdHit = plt.table(cellText=text,
                                 cellLoc='center',
                                 colWidths=widths,
                                 bbox=[0, -(k / 2.0 + 1.0) / 6.0, 1, k / 12.0])
        else:
            #consensus table
            tabCons = plt.table(cellText=[consensus[col * r:col * (r + 1)]],
                                cellLoc='center',
                                colWidths=widths,
                                bbox=[0, 1.07, 1, 0.04])

            #structure table
            tabStru = plt.table(cellText=[stru[col * r:col * (r + 1)]],
                                cellLoc='center',
                                colWidths=widths,
                                bbox=[0, 1.02, 1, 0.04])

            #sequence table
            text = []
            for key in sorted(cd_hit.keys()):
                text.append(cd_hit[key][col * r:col * (r + 1)])
            tabCdHit = plt.table(cellText=text,
                                 cellLoc='center',
                                 colWidths=widths,
                                 bbox=[0, -(k / 2.0 + 1.0) / 6.0, 1, k / 12.0])

        tabCons.auto_set_font_size(False)
        tabCons.set_fontsize(9)
        tabStru.auto_set_font_size(False)
        tabStru.set_fontsize(9)
        tabCdHit.auto_set_font_size(False)
        tabCdHit.set_fontsize(12)
        for v in tabCdHit.get_celld().values():
            v.set_edgecolor('w')

    plt.savefig(filename)
    return fig
Esempio n. 35
0
def desc_table(df):
    #ltype = df.type[df.type.str.contains('%|Land ')].unique()
    ltype = [
        'Land area (thousand hectares)', 'Arable land (% of total land area)',
        'Permanent crops (% of total land area)',
        'Forest cover (% of total land area)',
        'Important sites for terrestrial biodiversity protected (% of total sites protected)'
    ]

    # Adecuate the strings of types of lands
    lterms = []
    for n in ltype:
        s = (re.sub("[\(\[].*?[\)\]]", "", n)).strip()
        s = s.replace('Land area', 'Total Land Area')
        words = s.split()
        letters = [word[0].upper().strip() for word in words]
        o = "".join(letters)
        o = o.replace('ISFTBP', 'IB')
        n = (s + ' (' + o + ')')
        lterms.append(n)

        #Spliting the sentence for adequate it to the column width
    lterms[
        4] = 'Important sites for\n terrestrial biodiversity\n protected (IB)'

    # Manual list with definitions of the type of lands
    t_0 = 'Total area excluding area under inland water bodies. The definition of inland water bodies generally includes\n major rivers and lakes. Data is expressed in 1000 hectares (Ha).'
    t_1 = 'Arable land includes land defined by the FAO as land under temporary crops (double-cropped areas are counted once),\n temporary meadows for mowing or for pasture, land under market or kitchen gardens, and land temporarily fallow.\n Land abandoned as a result of shifting cultivation is excluded.'
    t_2 = 'Crops are divided into temporary and permanent crops. Permanent crops are sown or planted once, and then occupy\n the land for some years and need not be replanted after each annual harvest, such as cocoa, coffee and rubber.\n This category includes flowering shrubs, types fruit trees, nut trees and vines, but excludes trees grown for wood or timber.'
    t_3 = 'Area covered with forest.'
    t_4 = 'Terrestrial protected areas.'

    rows = [[lterms[0], t_0], [lterms[1], t_1], [lterms[2], t_2],
            [lterms[3], t_3], [lterms[4], t_4]]
    columns = ['Types', 'Description']

    color = [["gainsboro", "gainsboro"], ["lightsalmon", "lightsalmon"],
             ["indianred", "indianred"], ["lightblue", "lightblue"],
             ["cornflowerblue", "cornflowerblue"]]

    fig = plt.figure(figsize=(15, 5))

    ax = fig.add_subplot(111, frameon=False, xticks=[], yticks=[])

    tab = plt.table(
        colLabels=columns,
        cellText=rows,
        loc='center',
        cellColours=color,
        colWidths=(0.23, 1.17),
        cellLoc='center',
        rowLoc='center',
        bbox=(-0.16, 0, 1.28, 1),
    )
    # Changing the fontfamily
    for n in range(len(columns)):
        tab[0, n].set_text_props(fontfamily='Purisa',
                                 fontweight='heavy',
                                 size=16)
    for n in range(1, (len(rows) + 1)):
        for s in range(0, 2):
            tab[n, s].set_text_props(size=14)

    # Individual settings
    tab.auto_set_font_size(False)
    tab.set_in_layout(True)
    tab.scale(0.9, 5.5)  #set the width of the collumns

    # Cell height settings
    cellDict = tab.get_celld()
    for n in range(5):
        l = [0, 4, 5]
        if n in l:
            cellDict[(n, 0)].set_height(0.15)
            cellDict[(n, 1)].set_height(0.15)

    plt.savefig('../images/desc_table.png')
    return plt.show()
Esempio n. 36
0
    def print_prediction_multiple_models(self):

        change_folder("Results_Merge_Data")

        measures = return_meas_per_prop()

        with open("end_dropped_data_first_values.json", 'r') as handle:
            first_values = json.load(handle)

        with open("end_dropped_data_last_values.json", 'r') as handle:
            last_values = json.load(handle)

        with open("end_dropped_data_coefs.json", 'r') as handle:
            aver_coefs = json.load(handle)

        move_initial_folder()
        change_folder("Training")
        change_inside_folder("models")

        for property in measures:

            change_inside_folder(property)
            change_inside_folder("poly")  #It can be change to  linear and rbf
            count = 0
            for measure in measures[property]:

                count += 1
                I = np.array([[
                    first_values[property][measure][j],
                    last_values[property][measure][j],
                    aver_coefs[property][measure][j]
                ] for j in range(0, len(first_values[property][measure]))])
                if count == 1:
                    I2 = I
                else:
                    I2 = np.concatenate((I2, I), axis=1)

            max_per = 0
            max_a = 0
            max_b = 0

            count = 0

            vals = [[0 for c in range(20)] for t in range(20)]
            label_col = [69 / 255, 139 / 255, 116 / 255]
            colors = [[(245 / 255, 245 / 255, 220 / 255) for c in range(20)]
                      for t in range(20)]

            labely = []
            labelx = []
            nu_1 = 0
            for k in range(1, 21):
                nu_1 = 0.01 * k
                labely.append(nu_1)
                labelx.append(nu_1)

            for a in range(1, 21):
                nu_tes = (a * 0.01)
                for b in range(1, 21):
                    gama = (b * 0.01)

                    clf = joblib.load('nu_' + str(nu_tes) + 'gama_' +
                                      str(gama) + '_' + property +
                                      '_model.joblib')

                    predictions = clf.predict(I2)
                    decision = clf.decision_function(I2)

                    k = round(predictions.tolist().count(1) / len(predictions),
                              3)
                    if k > max_per:
                        max_per = k
                        max_a = a
                        max_b = b

                    vals[a - 1][b - 1] = k

            colors[max_a - 1][max_b - 1] = [0, 0, 238 / 255]

            tab = plt.table(cellText=vals,
                            rowLabels=labelx,
                            colLabels=labely,
                            rowColours=[label_col] * 20,
                            colColours=[label_col] * 20,
                            cellColours=colors,
                            cellLoc='center',
                            loc='upper left')

            plt.axis('off')

            move_initial_folder()
            change_folder("Training")
            change_inside_folder("Best_models")
            plt.savefig(property)
            plt.clf()

            move_initial_folder()
            change_folder("Training")
            change_inside_folder("models")

            print('Max percentage ' + str(max_per) + ' for nu ' +
                  str(max_a * 0.01) + ' and for gama ' + str(max_b * 0.01) +
                  " property " + property)
def executor(merged_time_series_to_cluster,
             upstream_TSS=0,
             downstream_TSS=0,
             diff_bind_version=False,
             mode_atr=["FIRST_TS", "SECOND_TS"][1],
             mode_atr2=["ENHANCER", "GENE", "TSS"][1],
             GLOBAL_OR_SURVIVED=["survived", "global"][1],
             mode_of_data_sets=["Ciiras", "Others_from_cistrom_finder"][0],
             sorted_mode=["amplitude_sorted", "size_sorted"][1],
             dont_plot=["ESR2", "RAD21"]):

    pwd = os.getcwd()

    hg = 'hg19'

    if mode_of_data_sets == "Ciiras":
        name_of_files = np.loadtxt(pwd + "/" + hg +
                                   "/list_of_files_Ciira_names_changed.txt",
                                   dtype=str)

    elif mode_of_data_sets == "Others_from_cistrom_finder":
        name_of_files = np.loadtxt(pwd + "/" + hg + "/list_of_files.txt",
                                   dtype=str)

    path_to_R = pwd + "/R_scripts/AP_clustering_output/"

    survived = np.loadtxt(
        path_to_R +
        '{0}_survived_indexes'.format(merged_time_series_to_cluster)).astype(
            int)  # saved during filtering

    if diff_bind_version:
        peaks = np.loadtxt(config_variables.name_of_enhancer_file_for_overlap,
                           dtype=str)
        indexes_of_DB_peaks = np.loadtxt(pwd + "/" + hg +
                                         "/indexes_of_DB_peaks.csv",
                                         dtype=int,
                                         skiprows=1,
                                         usecols=(1, ),
                                         delimiter=",")
        labels = np.zeros(len(peaks), int)
        labels[indexes_of_DB_peaks] = 1
        labels = labels + 1
        labels = labels[survived]

    else:
        labels = np.loadtxt(
            path_to_R + '{0}_labels'.format(merged_time_series_to_cluster),
            str,
            delimiter=",")[1:, 1].astype(int)  # from EP clustering

    save_to_temp_folder = pwd + "/" + hg + "/" + merged_time_series_to_cluster + "_results_temp_{0}/".format(
        GLOBAL_OR_SURVIVED)

    if not os.path.exists(save_to_temp_folder):
        os.makedirs(save_to_temp_folder)

    def create_GENE_file(upstream_TSS):

        data = np.loadtxt(
            config_variables.name_of_time_series_promoter_file_for_TSS_start,
            dtype=str,
            delimiter='\t')
        plus_strand = data[:, 4] == '+'

        data[plus_strand, 1] = data[plus_strand, 1].astype(int) - upstream_TSS
        data[np.invert(plus_strand),
             2] = data[np.invert(plus_strand), 2].astype(int) + upstream_TSS

        data = np.c_[data, range(len(data))]

        np.savetxt(name_of_file_for_overlap, data, fmt='%s', delimiter='\t')

    def create_TSS_file(upstream_TSS, downstream_TSS):

        data = np.loadtxt(
            config_variables.name_of_time_series_promoter_file_for_TSS_start,
            dtype=str,
            delimiter='\t')
        plus_strand = data[:, 4] == '+'

        data[plus_strand, 2] = data[plus_strand, 1].astype(int) + 1
        data[np.invert(plus_strand),
             1] = data[np.invert(plus_strand), 2].astype(int) - 1

        data = np.c_[data, range(len(data))]

        np.savetxt(name_of_file_for_overlap, data, fmt='%s', delimiter='\t')

    if mode_atr2 == "TSS":
        name_of_file_for_overlap = save_to_temp_folder + config_variables.name_of_time_series_promoter_file_for_TSS_start[
            7:-3] + "_TSS_{0}_{1}".format(upstream_TSS, downstream_TSS)
        create_TSS_file(upstream_TSS, downstream_TSS)
        end_file_identifier = '{0}_{1}_{2}'.format(mode_atr2, upstream_TSS,
                                                   downstream_TSS)

    if mode_atr2 == "GENE":

        name_of_file_for_overlap = save_to_temp_folder + config_variables.name_of_time_series_promoter_file_for_TSS_start[
            7:-3] + "_GENE_{0}".format(upstream_TSS)
        create_GENE_file(upstream_TSS)
        end_file_identifier = '{0}_{1}'.format(mode_atr2, upstream_TSS)

    elif mode_atr2 == "ENHANCER":
        name_of_file_for_overlap = config_variables.name_of_enhancer_file_for_overlap
        end_file_identifier = '{0}'.format(mode_atr2)

    def create_enrichment_matrix():

        motif_enrichments = [[]] * len(
            np.loadtxt(
                name_of_file_for_overlap,
                dtype=str))  #tutaj trzeba zmienic na gena albo enhancera

        for name_of_file in name_of_files:

            name_of_file_ = pwd + "/" + hg + "/" + name_of_file
            command_line = "windowBed -a {0} -b {1} -sw -l {2} -r {3}".format(
                name_of_file_, name_of_file_for_overlap, upstream_TSS,
                downstream_TSS
            )  # name_of_enhancer_file_for_overlap zmienic na TSS w przypadku genow i dodac left right
            args = shlex.split(command_line)

            proc = subprocess.Popen(args,
                                    stdout=subprocess.PIPE,
                                    stderr=subprocess.STDOUT)
            output_raw = proc.stdout.read()

            if len(output_raw):
                output = np.array(
                    map(lambda x: x.split("\t"),
                        (output_raw).split("\n"))[:-1])

                np.savetxt(save_to_temp_folder + name_of_file[:-4] +
                           '_overlap_{0}'.format(end_file_identifier),
                           output,
                           fmt='%s',
                           delimiter='\t')

                for index_of_peak, peak_overlap in zip(
                        output[:, -1].astype(int), output[:, :5]):
                    motif_enrichments[
                        index_of_peak] = motif_enrichments[index_of_peak] + [
                            list(peak_overlap[[0, 1, 2, 4]]) +
                            [peak_overlap[3].split("_")[-1]] +
                            [name_of_file.split("_")[1]] +
                            [name_of_file.split("_")[0]]
                        ]

        file_1 = open(
            save_to_temp_folder +
            "enriched_peaks_{0}".format(end_file_identifier), 'w')
        peaks = np.loadtxt(name_of_file_for_overlap, dtype=str)

        for index in [
                ind for ind, el in enumerate(motif_enrichments) if len(el)
        ]:
            array = motif_enrichments[index]
            for el in array:

                save = '\t'.join(np.r_[peaks[index], el])
                save += '\n'
                file_1.write(save)

        file_1.close()

        enriched_peaks = np.loadtxt(
            save_to_temp_folder +
            "enriched_peaks_{0}".format(end_file_identifier), str)
        legend = np.unique(enriched_peaks[:, -2])
        map_legend = {}
        for ind, el in enumerate(legend):
            map_legend[el] = ind

        count_matrix = np.zeros((len(motif_enrichments), len(legend)), bool)

        for el in enriched_peaks:
            count_matrix[int(el[-8]), map_legend[el[-2]]] = True

        np.save(
            save_to_temp_folder +
            "enrichment_matrix_{0}".format(end_file_identifier), count_matrix)
        return legend, count_matrix

    legend, count_matrix = create_enrichment_matrix()

    def sorts_labels():
        labels_count = np.histogram(labels, bins=range(0,
                                                       max(labels) + 2))[0][1:]
        sorted_counts_labels = np.argsort(labels_count)[::-1]
        sorted_counts = labels_count[sorted_counts_labels]

        sorted_labels = np.unique(labels)[sorted_counts_labels]

        def sorted_labels_func():

            time_series_survived = np.loadtxt(path_to_R +
                                              merged_time_series_to_cluster,
                                              dtype=np.float,
                                              delimiter=",")

            means = []
            for ind, label in enumerate(sorted_labels):

                if mode_atr == "SECOND_TS":
                    mean = (time_series_survived[label == labels, 8:]).mean(0)
                elif mode_atr == "FIRST_TS":
                    mean = (time_series_survived[label == labels, :8]).mean(0)

                means += [mean]

            means = np.array(means)

            ind = np.lexsort(
                (means[:, 7], means[:, 6], means[:, 5], means[:, 4],
                 means[:, 3], means[:, 2], means[:, 1], means[:, 0]))

            amplitude = np.ravel(np.diff(means[:, [0, 4]]))
            #amplitude = means[:, 4]/means[:, 0]
            if sorted_mode == "amplitude_sorted":
                ind = np.argsort(amplitude)[::-1]

            elif sorted_mode == "size_sorted":
                ind = np.arange(len(amplitude)).astype(int)

            return ind

        if diff_bind_version: ind_sort = [0, 1]
        else: ind_sort = sorted_labels_func()

        sorted_labels = sorted_labels[ind_sort]
        sorted_counts = sorted_counts[ind_sort]

        return sorted_labels, sorted_counts, ind_sort

    sorted_labels, sorted_counts, ind_sort = sorts_labels()

    def calculates_probabilities_for_cluster():

        print count_matrix[survived].sum(0) / float(survived.shape[0])

        from scipy.stats import binom

        ps = count_matrix[survived].sum(0) / float(survived.shape[0])

        prob = np.zeros((len(np.unique(labels)), len(ps)))

        enrichments_counts = prob.astype(int)
        #sorts

        for index_1, label in enumerate(sorted_labels):

            n = np.sum(labels == label)
            xs = count_matrix[survived][labels == label].sum(0)

            for index_2, p in enumerate(ps):
                p = ps[index_2]
                x = xs[index_2]
                prob[index_1, index_2] = 1. - binom.cdf(x - 1, n, p)

                enrichments_counts[index_1, index_2] = x

        np.savetxt(
            save_to_temp_folder +
            "_probabilities_of_enrichment_{0}".format(end_file_identifier),
            prob,
            delimiter="\t",
            fmt='%0.8f',
            header='\t'.join(legend))
        return prob, enrichments_counts

    if GLOBAL_OR_SURVIVED == "survived":
        prob, enrichments_counts = calculates_probabilities_for_cluster()

    def calculates_probabilities_for_cluster_global():

        if mode_atr2 == "ENHANCER":

            distal_mask = np.invert(config_variables.proximal_enhancers_mask)

            print count_matrix[distal_mask].sum(0) / float(
                count_matrix[distal_mask].shape[0])

            ps = count_matrix[distal_mask].sum(0) / float(
                count_matrix[distal_mask].shape[0])

        elif mode_atr2 == "GENE" or mode_atr2 == "TSS":

            print count_matrix.sum(0) / float(count_matrix.shape[0])

            ps = count_matrix.sum(0) / float(count_matrix.shape[0])

        from scipy.stats import binom

        prob = np.zeros((len(np.unique(labels)), len(ps)))

        enrichments_counts = prob.astype(int)
        #sorts

        for index_1, label in enumerate(sorted_labels):

            n = np.sum(labels == label)
            xs = count_matrix[survived][labels == label].sum(0)

            for index_2, p in enumerate(ps):
                p = ps[index_2]
                x = xs[index_2]
                prob[index_1, index_2] = 1. - binom.cdf(x - 1, n, p)

                enrichments_counts[index_1, index_2] = x

        np.savetxt(
            save_to_temp_folder +
            "_probabilities_of_enrichment_{0}".format(end_file_identifier),
            prob,
            delimiter="\t",
            fmt='%0.8f',
            header='\t'.join(legend))
        return prob, enrichments_counts

    if GLOBAL_OR_SURVIVED == "global":
        prob, enrichments_counts = calculates_probabilities_for_cluster_global(
        )

    mask_legend = np.ones_like(legend).astype(bool)
    mask_legend[np.in1d(legend, dont_plot)] = False

    file1 = open(
        save_to_temp_folder + merged_time_series_to_cluster +
        "_enrichment_{0}".format(end_file_identifier), "w")
    for i in range(len(prob)):
        file1.write(','.join(legend[(prob[i] < 0.01) * mask_legend]) + "\n")

    file1.close()

    from matplotlib import pyplot as plt

    time_series_survived = np.loadtxt(path_to_R +
                                      merged_time_series_to_cluster,
                                      dtype=np.float,
                                      delimiter=",")

    amplitude = np.zeros(len(sorted_labels))
    for ind, label in enumerate(sorted_labels):
        if mode_atr == "SECOND_TS":
            mean = (time_series_survived[label == labels, 8:]).mean(
                0
            )  # tu trzeba to poprawic jesli chcesz dodac clustering dla geny
        elif mode_atr == "FIRST_TS":
            mean = (time_series_survived[label == labels, :8]).mean(0)

        #amplitude[ind] = mean[4]/mean[0]#np.diff(mean[[0,4]])
        amplitude[ind] = np.diff(mean[[0, 4]])

    idx = Index(np.unique(labels))
    df = DataFrame(np.c_[prob[:, mask_legend], sorted_counts[:, None],
                         amplitude],
                   index=idx,
                   columns=np.r_[legend[mask_legend], ["Count"],
                                 ["Amplitude"]])
    vals = np.around(df.values, 2)
    normal = plt.Normalize(prob[:, mask_legend].min(), prob[:,
                                                            mask_legend].max())

    rise = np.zeros_like(vals).astype(bool)

    rise[:, :] = (amplitude > 0)[:, None]

    vals_enrich = np.c_[enrichments_counts[:, mask_legend],
                        sorted_counts[:, None],
                        (100 * amplitude[:, None]).astype(int)]

    matrix_colour = plt.cm.hot(normal(vals))
    mask_encriched = np.c_[prob[:, mask_legend] < 0.01,
                           np.ones((len(prob), 2), bool)]
    mask_encriched_2 = np.c_[prob[:, mask_legend] < 0.05,
                             np.ones((len(prob), 2), bool)]
    mask_encriched_3 = np.c_[prob[:, mask_legend] < 0.001,
                             np.ones((len(prob), 2), bool)]

    #matrix_colour[mask_encriched*rise] = np.array([0.0, 0.5019607843137255, 0.0, 0.6])
    #matrix_colour[mask_encriched*np.invert(rise)] = np.array([0.0, 0.5019607843137255, 0.0, 0.3])

    mask_depleted = np.c_[prob[:, mask_legend] > 0.99,
                          np.ones((len(prob), 2), bool)]
    mask_depleted_2 = np.c_[prob[:, mask_legend] > 0.995,
                            np.ones((len(prob), 2), bool)]
    mask_depleted_3 = np.c_[prob[:, mask_legend] > 0.999,
                            np.ones((len(prob), 2), bool)]

    white = [1., 1., 1., 1.]

    mask_niether = np.invert(mask_encriched + mask_depleted)

    #matrix_colour[mask_depleted*rise] = np.array([0.768, 0.090, 0.090, 0.3])

    #matrix_colour[mask_depleted*np.invert(rise)] = np.array([0.768, 0.090, 0.090, 0.6])

    matrix_colour[mask_depleted] = [0.862745, 0.0784314, 0.235294, 0.7]
    matrix_colour[mask_depleted_2] = [0.862745, 0.0784314, 0.235294, 0.85]
    matrix_colour[mask_depleted_3] = [0.862745, 0.0784314, 0.235294, 1.]

    matrix_colour[mask_encriched] = [0.180392, 0.545098, 0.341176,
                                     .7]  #[0., 1., 1., 1.]
    matrix_colour[mask_encriched_2] = [0.180392, 0.545098, 0.341176,
                                       .85]  #[0., 1., 1., 1.]
    matrix_colour[mask_encriched_3] = [0.180392, 0.545098, 0.341176,
                                       1.]  #[0., 1., 1., 1.]

    matrix_colour[mask_niether] = [0.815, 0.803, 0.803, 1.]

    matrix_colour[:, -2] = white

    normal_2 = plt.Normalize(amplitude.min(), amplitude.max())

    amplitude_column = plt.cm.bwr_r(normal_2(amplitude))

    matrix_colour[:, -1] = amplitude_column

    #matrix_colour[rise[:,0], -1] = np.array([0.0, 0.5019607843137255, 0.0, 0.6])

    #matrix_colour[np.invert(rise[:,0]), -1] = np.array([0.768, 0.090, 0.090, 0.6])

    #fig = plt.figure(figsize=(12,10))
    #ax = fig.add_subplot(111, frameon=True, xticks=[], yticks=[])
    #the_table=plt.table(cellText=vals_enrich, rowLabels=df.index, colLabels=df.columns,
    #                    colWidths = [0.07]*vals.shape[1], loc='center',
    #                    cellColours=plt.get_cmap('Spectral')(normal(vals)))

    fig = plt.figure(figsize=(15, 11))
    ax = fig.add_subplot(111, frameon=True, xticks=[], yticks=[])

    #fig.subplots_adjust(right=0.8)
    #cbar_ax = fig.add_axes([0.85, 0.15, 0.05, 0.7])

    sm = plt.cm.ScalarMappable(cmap="bwr_r",
                               norm=plt.Normalize(vmin=-1, vmax=1))
    sm._A = []
    #fig.colorbar(sm,shrink=0.25)#, ax = cbar_ax

    #cmap_r = mpl.cm.jet

    #ax1 = fig.add_axes([0.0, 0.9, 0.15])
    #norm = mpl.colors.Normalize(vmin=0, vmax=1)
    #cb1 = mpl.colorbar.ColorbarBase(ax1, cmap = cmap, norm=norm)

    the_table = plt.table(cellText=vals_enrich,
                          rowLabels=ind_sort + 1,
                          colLabels=df.columns,
                          colWidths=[0.06] * vals.shape[1],
                          rowLoc='right',
                          loc='center left',
                          cellColours=matrix_colour)

    #rowLabels=df.index
    import matplotlib.patches as mpatches

    line2a, = plt.plot([], [],
                       label="enriched, p < 0.01",
                       linewidth=15,
                       color=[0.180392, 0.545098, 0.341176,
                              0.7])  #[0., 1., 1., 1.]
    line2b, = plt.plot([], [],
                       label="enriched, p < 0.005",
                       linewidth=15,
                       color=[0.180392, 0.545098, 0.341176, 0.85])
    line2c, = plt.plot([], [],
                       label="enriched, p < 0.001",
                       linewidth=15,
                       color=[0.180392, 0.545098, 0.341176, 1.])

    line3a, = plt.plot([], [],
                       label="depleted, p < 0.01",
                       linewidth=15,
                       color=[0.862745, 0.0784314, 0.235294, 0.7])
    line3b, = plt.plot([], [],
                       label="depleted, p < 0.005",
                       linewidth=15,
                       color=[0.862745, 0.0784314, 0.235294, 0.85])
    line3c, = plt.plot([], [],
                       label="depleted, p < 0.001",
                       linewidth=15,
                       color=[0.862745, 0.0784314, 0.235294, 1.])

    line1, = plt.plot([], [],
                      label="neither",
                      linewidth=15,
                      color=[0.815, 0.803, 0.803, 1.])

    #line4, = plt.plot([],[], label="rises between 0-40min", linewidth=15, color = [0.0, 0.5019607843137255, 0.0, 0.6])
    #line5, = plt.plot([],[], label="drops between 0-40min", linewidth=15, color = [0.768, 0.090, 0.090, 0.6])

    #line2, = plt.plot([],[], label="enriched & rise", linewidth=15, color = [0.0, 0.5019607843137255, 0.0, 0.6])
    #line3, = plt.plot([],[], label="enriched & drops", linewidth=15, color = [0.0, 0.5019607843137255, 0.0, 0.3])

    #line4, = plt.plot([],[], label="depleted & rise", linewidth=15, color = [0.768, 0.090, 0.090, 0.3])
    #line5, = plt.plot([],[], label="depleted & drops", linewidth=15, color = [0.768, 0.090, 0.090, 0.6])

    #line1, = plt.plot([],[], label="neither", linewidth=15, color = [0.815, 0.803, 0.803, 1.])

    #fig.patch.set_visible(False)
    ax.spines['top'].set_visible(False)
    ax.spines['right'].set_visible(False)
    ax.spines['bottom'].set_visible(False)
    ax.spines['left'].set_visible(False)

    table_props = the_table.properties()
    table_cells = table_props['child_artists']
    for cell in table_cells:
        cell.set_height(1.2 * cell.get_height())
    #plt.legend()

    first_legend = plt.legend(bbox_to_anchor=(0.96, 1))
    ax = plt.gca().add_artist(first_legend)

    cbaxes = fig.add_axes([0.685, 0.45, 0.025, 0.2])
    cb = fig.colorbar(sm, cax=cbaxes, ticks=[-1, 0, 1])  #, shrink=2.)
    cb.ax.set_yticklabels(
        ['drops between 0-40min', 'stationary', 'rises between 0-40min'])

    #plt.text(2, 6, r'an equation: $E=mc^2$', fontsize=15)

    #plt.title("Transcription Factors", fontsize=20)
    #plt.ylabel('Clusters', fontsize=20)
    #plt.xlabel("distance [B]", fontsize=20)
    if diff_bind_version:
        name_save = '{0}TF_enrichment_{1}.pdf'.format(save_to_temp_folder,
                                                      "diff_bind")
    else:
        name_save = '{0}TF_enrichment_{1}_{2}_{3}_{4}_0_40.pdf'.format(
            save_to_temp_folder, end_file_identifier, mode_atr, sorted_mode,
            mode_of_data_sets)

    pdf = PdfPages(name_save)
    pdf.savefig()
    pdf.close()
    plt.close('all')
Esempio n. 38
0
    def ozan_vis(self, iterations):
        for i in range(iterations):
            x_ini_np, x_true_np, y_np, lab_np = self.simulated_measurements(1)
            labels, output_pic, output_labels, fbp_clas = self.sess.run(
                [
                    self.ohl, self.result, self.probabilities,
                    self.fbp_probabilities
                ],
                feed_dict={
                    self.x_ini: x_ini_np,
                    self.x_true: x_true_np,
                    self.y: y_np,
                    self.labels: lab_np
                })
            true_labels = []
            for k in range(len(labels[0])):
                true_labels.append([labels[0][k]])
            recon_labels = []
            for k in range(len(output_labels[0])):
                recon_labels.append([output_labels[0][k]])
            fbp_labels = []
            for k in range(len(fbp_clas[0])):
                fbp_labels.append([fbp_clas[0][k]])
            columns = ('Probability')
            rowLabels = ('0', '1', '2', '3', '4', '5', '6', '7', '8', '9')

            # true figure
            plt.figure(1)
            plt.imshow(x_true_np[0, ..., 0], cmap='gray')
            plt.axis('off')
            # Add a table at the bottom of the axes
            plt.table(cellText=true_labels,
                      rowLabels=rowLabels,
                      colLabels=columns,
                      loc='bottom')
            plt.savefig('Data/Evaluations/' + self.model_name + '_True_' +
                        str(i) + '.png',
                        bbox_inches='tight')
            plt.close()

            # reconstructed figure
            plt.figure(2)
            plt.imshow(output_pic[0, ..., 0], cmap='gray')
            plt.axis('off')
            # Add a table at the bottom of the axes
            plt.table(cellText=recon_labels,
                      rowLabels=rowLabels,
                      colLabels=columns,
                      loc='bottom')
            plt.savefig('Data/Evaluations/' + self.model_name +
                        '_Reconstruction_' + str(i) + '.png',
                        bbox_inches='tight')
            plt.close()

            # fbp figure
            plt.figure(3)
            plt.imshow(x_ini_np[0, ..., 0], cmap='gray')
            plt.axis('off')
            # Add a table at the bottom of the axes
            plt.table(cellText=fbp_labels,
                      rowLabels=rowLabels,
                      colLabels=columns,
                      loc='bottom')
            plt.savefig('Data/Evaluations/' + self.model_name + '_FBP_' +
                        str(i) + '.png',
                        bbox_inches='tight')
            plt.close()
Esempio n. 39
0
if __name__ == '__main__':
    data = []
    columns = ['niqe_mean', 'niqe_std']
    rows = []
    with open("result.csv") as f:
        f_csv = csv.DictReader(f)
        for i, row1 in enumerate(f_csv):
            rows.append(row1['name'])
            data.append(row1)
    n_rows = len(data)
    cell_text = []
    for row in range(n_rows):
        y_offset = []
        y_offset.clear()
        for col in columns:
            y_offset.append(f'{float(data[row][col]):.3f}')
        cell_text.append(y_offset)

    the_table = plt.table(cellText=cell_text,
                          rowLabels=rows,
                          colLabels=columns,
                          loc='left',
                          cellLoc='center',
                          rowLoc='center')
    # the_table.scale(0.3, 1)
    # Adjust layout to make room for the table:
    plt.subplots_adjust(left=0.6, bottom=0.2)
    plt.axis('off')
    plt.show()
Esempio n. 40
0
def test_non_square():
    # Check that creating a non-square table works
    cellcolors = ['b', 'r']
    plt.table(cellColours=cellcolors)
    ]

    table_vals_1 = recallmx

    table_vals_2 = precisionmx

    # 第一行第一列图形
    #ax1 = plt.subplot(1, 2, 1)
    # 第一行第二列图形
    #ax2 = plt.subplot(1, 2, 2)

    plt.figure(1)

    my_table_1 = plt.table(cellText=table_vals_1,
                           colWidths=[0.111] * 10,
                           rowLabels=row_labels,
                           colLabels=col_labels,
                           loc='best')

    #plt.sca(ax1)

    plt.axis('off')

    plt.title('recall')

    plt.plot()

    plt.show()

    plt.figure(2)
Esempio n. 42
0
    ['0.6698717948717948', '1.0', '0.8023032629558542', '209'],
    ['0.6439232409381663', '0.766497461928934', '0.6998841251448435', '394'],
    ['0.4821917808219178', '0.6048109965635738', '0.5365853658536586', '291'],
    ['0.6576923076923077', '0.6951219512195121', '0.6758893280632411', '246'],
    ['0.8994082840236687', '0.8760806916426513', '0.8875912408759125', '347'],
    ['0.7724550898203593', '0.7865853658536586', '0.7794561933534744', '164'],
    ['0.2159090909090909', '0.3958333333333333', '0.27941176470588236', '144'],
    [
        '0.47101449275362317', '0.5284552845528455', '0.49808429118773945',
        '246'
    ], ['0.7701863354037267', '0.5', '0.6063569682151588', '248'],
    ['0.7056737588652482', '0.7481203007518797', '0.7262773722627737', '266'],
    ['0.6666666666666666', '0.6358381502890174', '0.650887573964497', '346'],
    ['0.6196581196581197', '0.7038834951456311', '0.6590909090909092', '206'],
    ['0.774074074074074', '0.7827715355805244', '0.7783985102420856', '267'],
    ['0.8583333333333333', '0.9307228915662651', '0.8930635838150288', '332']
]

the_table = plt.table(cellText=data,
                      colWidths=[0.1] * (len(col_label) + 1),
                      rowLabels=row_label,
                      colLabels=col_label,
                      loc='center right')
the_table.auto_set_font_size(False)
the_table.set_fontsize(12)
the_table.scale(2, 1)
ax.axis('off')
ax.axis('tight')

plt.show()
Esempio n. 43
0
                       ('%.2f' % (np.mean(np.array(y_c1)))), ('%.2f' % (np.mean(np.array(y_c2)))), \
                       ('%.2f' % (np.mean(np.array(y_d1)))), ('%.2f' % (np.mean(np.array(y_d2))))])
    col_value.append([('%.2f' % (np.mean(np.array(y_a)))), ('%.2f' % (np.std(np.array(y_a)))), ('%.2f' % (np.mean(np.array(y_b)))), ('%.2f' % (np.std(np.array(y_b)))), \
                       ('%.2f' % (np.mean(np.array(y_c1)))), ('%.2f' % (np.std(np.array(y_c1)))), ('%.2f' % (np.mean(np.array(y_c2)))), ('%.2f' % (np.std(np.array(y_c2)))), \
                       ('%.2f' % (np.mean(np.array(y_d1)))), ('%.2f' % (np.std(np.array(y_d1)))), ('%.2f' % (np.mean(np.array(y_d2)))), ('%.2f' % (np.std(np.array(y_d2))))])
    
plt.subplots_adjust(wspace=0.3, hspace=0.3)

plt.figure(num+1)
table_vals = []
tmp = []
for col in mean_value:
    print(np.array(col))
# for col in col_value:
#     print(np.array(col))
for i in range(0,len(col_value[0])):
    for col in col_value:
        tmp.append(col[i])
    table_vals.append(tmp)
#     print(tmp)
    tmp = []
print(table_vals)
print(col_labels)
print(row_labels)
my_table = plt.table(cellText=table_vals, colWidths=[0.2]*num, \
                     rowLabels=row_labels, colLabels=col_labels, \
                     loc='best')
my_table.set_fontsize(20)
plt.axis('off')

# plt.show()
Esempio n. 44
0
    try:
        sys.argv[4]  # Parameter which is entered by user
    except Exception as e:
        showTable = True  # default display Table
    else:
        showTable = False
        if sys.argv[
                4] == '1':  # if user enter 1 display table else dont display the table
            showTable = True

    plt.xticks(x, my_xticks, fontsize=numberFontSize)
    if showTable:  # True display Table
        # First Table start
        the_table = plt.table(cellText=y,
                              colLabels=my_xticks,
                              loc='bottom',
                              colLoc='right',
                              rowLoc='left')

        the_table.set_fontsize(numberFontSize)
        the_table.scale(1, 1)

        #Remove Border of table 1 cell
        for key, cell in the_table.get_celld().items():
            cell.set_linewidth(0)
        # First Table end

        # right side table of company name start
        my_xticks_1 = [titleName]
        legendLabel_1 = np.reshape(legendLabel, (-1, 1))
Esempio n. 45
0
# 5 table
if __name__ == '__main__':
    import matplotlib.pyplot as plt
    import numpy as np
    fig = plt.figure(figsize=(9, 9), facecolor='white')
    ax = fig.add_axes([0.00, 0.00, 1, 1], facecolor='white', zorder=0)

    # -----------------------------生成table----------------------------------------------------------------------------
    # 用celltext来生成,celltext是一个矩阵,里面放text
    # plt.table?
    cell_text = [['●'] * 51] * 51  # float也可以
    table = plt.table(
        cellText=cell_text,
        cellLoc='center',
        # colWidths=[0.0196,]*10,
        # rowLabels=['1']*4, rowColours=['red']*4, rowLoc='left',
        # colLabels=['2']*6, colColours=['yellow']*6, colLoc='center',
        loc='center'  # 表格所在位置
    )
    fig.show()
    del fig, ax, table

    # 用cellColours来生成
    cell_color = [
        ['yellow'] * 3,
        ['red'] * 3,
        ['green'] * 3,
    ]
    table2 = plt.table(cellColours=cell_color, cellLoc='center', loc='center')

    fig.show()
def main():
    base_f = "base_out.csv"
    baseline = np.array(pd.read_csv(base_f, header=None))
    q = []
    d = []
    th = []
    ti = []
    cp = []
    for i in range(1, 9):
        out_file = str(i) + "_out_method3.csv"
        output = np.array(pd.read_csv(out_file, header=None))
        queue_error = 0.0
        dynamic_error = 0.0
        for j in range(len(output)):
            queue = baseline[j][1] - output[j][1]
            queue = queue * queue
            dynamic = baseline[j][2] - output[j][2]
            dynamic = dynamic * dynamic
            queue_error = queue_error + queue
            dynamic_error = dynamic_error + dynamic
        queue_error = queue_error / len(output)
        dynamic_error = dynamic_error / len(output)
        th.append(i)
        q.append(queue_error)
        d.append(dynamic_error)
    runtime_file = "runtime_method3.csv"
    cpu_file = "cpuUtilisation_method3.csv"
    runtime = np.array(pd.read_csv(runtime_file, header=None))
    cpu = np.array(pd.read_csv(cpu_file, header=None))
    for i in range(len(cpu)):
        ti.append(runtime[i][1])
        cp.append(cpu[i][1])
    plt.figure()
    plt.xlabel("Number of threads")
    plt.ylabel("Avgerage squared error")
    plt.plot(th, q, label="Queue Density error", marker='o')
    plt.plot(th, d, label="Dynamic Density error", marker='o')
    plt.legend()
    plt.grid()
    plt.savefig("plot1.png", dpi=200)
    plt.show()

    fig, ax = plt.subplots()
    ax.set_xlabel("Number of threads")
    ax.set_ylabel("Runtime(seconds)")
    ln1 = ax.plot(th, ti, label="Runtime(seconds)", color="red", marker='o')
    ax2 = ax.twinx()
    ax2.set_ylabel("CPU Utilisation %")
    ln2 = ax2.plot(th,
                   cp,
                   label="Percentage of cpu utilised by the program",
                   color="blue",
                   marker='o')
    lns = ln1 + ln2
    labs = [l.get_label() for l in lns]
    ax.legend(lns, labs, loc=5)
    plt.grid()
    plt.savefig("plot2.png", dpi=200)
    plt.show()

    cell_text = []
    for i in range(len(th)):
        cell_text.append([th[i], ti[i], cp[i], q[i], d[i]])
    table = plt.table(cellText=cell_text,
                      colLabels=[
                          'Number of threads', 'Runtime(s)',
                          'CPU Utilisation(%)', 'Queue Density Error',
                          'Dynamic Density Error'
                      ],
                      loc='center')
    ax = plt.gca()
    ax.get_xaxis().set_visible(False)
    ax.get_yaxis().set_visible(False)
    plt.box(on=None)
    table.scale(1, 1.5)
    fig = plt.gcf()
    fig.set_size_inches(11, 7)
    plt.savefig("table1.png", dpi=200)
    plt.show()

    q = list(map(lambda x: 100.0 / (1.0 + x), q))
    d = list(map(lambda x: 100.0 / (1.0 + x), d))
    plt.figure()
    plt.xlabel("Number of threads")
    plt.ylabel("Utility Percentage")
    plt.plot(th, q, label="Queue Density utility percentage", marker='o')
    plt.plot(th, d, label="Dynamic Density utility percentage", marker='o')
    plt.legend()
    plt.grid()
    fig = plt.gcf()
    fig.set_size_inches(8, 6)
    plt.savefig("plot3.png", dpi=200)
    plt.show()

    plt.figure()
    plt.xlabel("Runtime (seconds)")
    plt.ylabel("Utility Percentage")
    plt.plot(ti, q, label="Queue Density utility percentage", marker='o')
    plt.plot(ti, d, label="Dynamic Density utility percentage", marker='o')
    plt.legend()
    plt.grid()
    fig = plt.gcf()
    fig.set_size_inches(8, 6)
    plt.savefig("plot4.png", dpi=200)
    plt.show()

    cell_text = []
    for i in range(len(th)):
        cell_text.append([th[i], ti[i], q[i], d[i]])
    table = plt.table(cellText=cell_text,
                      colLabels=[
                          'Number of threads', 'Runtime(sec)',
                          'Queue Density Utility(%)',
                          'Dynamic Density Utility(%)'
                      ],
                      loc='center')
    ax = plt.gca()
    ax.get_xaxis().set_visible(False)
    ax.get_yaxis().set_visible(False)
    plt.box(on=None)
    table.scale(1, 1.5)
    fig = plt.gcf()
    fig.set_size_inches(10, 7)
    plt.savefig("table2.png", dpi=200)
    plt.show()
Esempio n. 47
0
ax2.set_xlim([0, np.e])
ax2.set_ylabel('Y values for ln(x)')
ax2.set_xlabel('Same X for both exp(-x) and ln(x)')
plt.show()

# hist
mu = 100  # mean of distribution
sigma = 15  # standard deviation of distribution
x1 = mu + sigma * np.random.randn(10000)
x2 = mu + 50 + sigma * np.random.randn(10000)
num_bins = 50
n1, bins1, patches1 = plt.hist(x1,
                               num_bins,
                               normed=1,
                               facecolor='green',
                               alpha=0.3,
                               histtype='stepfilled')
n1, bins1, patches1 = plt.hist(x2,
                               num_bins,
                               normed=1,
                               facecolor='red',
                               alpha=0.3,
                               histtype='stepfilled')
plt.table(cellText=[['a', 'b', 'c'], [1, 2, 3]],
          rowLabels=['1 row', '2 row'],
          colLabels=['1 col', '2 col', '3 col'],
          loc='bottom',
          bbox=[0, -0.25, 1, 0.15])

# adding text, legends, table ....
Esempio n. 48
0
col_labels = ['mean', 'std']
row_labels = ['ICTON', 'ICTONwT', '41-to-40', '42-to-40']

table_vals = [[round(np.mean(io), 4),
               round(np.std(io), 4)],
              [round(np.mean(ic), 4),
               round(np.std(ic), 4)],
              [round(np.mean(n4140), 4),
               round(np.std(n4140), 4)],
              [round(np.mean(n4240), 4),
               round(np.std(n4240), 4)]]

# Draw table
the_table = plt.table(cellText=table_vals,
                      colWidths=[0.1] * 3,
                      rowLabels=row_labels,
                      colLabels=col_labels,
                      loc='center')
the_table.auto_set_font_size(False)
the_table.set_fontsize(20)
the_table.scale(4, 4)
plt.tick_params(axis='x',
                which='both',
                bottom=False,
                top=False,
                labelbottom=False)
plt.tick_params(axis='y',
                which='both',
                right=False,
                left=False,
                labelleft=False)
def MWT(points, n):

    for m in range(n):
        x = points[m][0]
        y = points[m][1]
        plt.plot(x, y, 'bo')
        plt.text(x * (1 + 0.01), y * (1 + 0.01), m, fontsize=10)
        if m == n - 1:
            m = -1
        x, y = [points[m][0],
                points[m + 1][0]], [points[m][1], points[m + 1][1]]
        plt.plot(x, y, marker='o')
        plt.draw()

    if n < 3:
        return 0
    columns = [x for x in range(len(points))]
    rows = [x for x in range(len(points))]
    n_rows = len(points)
    table = []
    ktable = []
    for row in range(n_rows):
        table.append([math.inf] * len(points))
        ktable.append([-1] * len(points))

    gap = 0
    while gap < n:
        i = 0
        j = gap
        while j < n:
            if j < (i + 2):
                table[i][j] = 0
                the_table = plt.table(cellText=table,
                                      rowLabels=rows,
                                      colLabels=columns,
                                      loc='bottom')
                the_table._cells[(i + 1, j)].set_facecolor("#56b5fd")

            else:
                table[i][j] = math.inf
                k = i + 1
                while k < j:
                    val = int(
                        round(table[i][k] + table[k][j] +
                              cost(points, i, j, k)))
                    if table[i][j] > val:
                        table[i][j] = val
                        ktable[i][j] = k
                        the_table = plt.table(cellText=table,
                                              rowLabels=rows,
                                              colLabels=columns,
                                              loc='bottom')
                        the_table._cells[(i + 1, j)].set_facecolor("#56b5fd")
                        the_table._cells[(i + 1, k)].set_facecolor("red")
                        the_table._cells[(k + 1, j)].set_facecolor("red")
                        the_ktable = plt.table(cellText=ktable,
                                               rowLabels=rows,
                                               colLabels=columns,
                                               loc='top')
                        the_ktable._cells[(i + 1, j)].set_facecolor("#56b5fd")
                        plt.draw()
                        plt.pause(0.01)
                    k = k + 1
            i = i + 1
            j = j + 1
        gap = gap + 1

    for a in range(0, n):
        for b in range(0, n):
            if table[a][b] == math.inf:
                table[a][b] = None

    p = []
    for x in range(n):
        p.append(x)

    j = n - 1

    the_table = plt.table(cellText=table,
                          rowLabels=rows,
                          colLabels=columns,
                          loc='bottom')
    the_ktable = plt.table(cellText=ktable,
                           rowLabels=rows,
                           colLabels=columns,
                           loc='top')

    # Adjust layout to make room for the table:

    draw(0, j, int(round(ktable[0][n - 1])), table, the_table, ktable,
         the_ktable, points)
Esempio n. 50
0
def plot_docs_distribution(df,
                           col_name,
                           col_score_name,
                           num_topics,
                           topic_labels,
                           trow_label,
                           title,
                           width=0.3,
                           tscale_x=1.5,
                           tscale_y=2,
                           num_cuts=4,
                           pad=90,
                           table_vals=[[
                               'Below 0.25', '0.25 to 0.5', '0.5 to 0.75',
                               '0.75 or Above'
                           ]],
                           bins=[0, 0.25, 0.5, 0.75, 1],
                           bin_labels=['Very Low', 'Low', 'Medium', 'High']):
    """ 
    Create a bar chart of documents distribution per score range.

    Args:
        df: a data frame
        col_name: df's column name of class label
        col_score_name: df's colum name of scores
        num_topics: number of topics/clusters
        trow_label: row labels for data table
        title: plot's title
        width: bar's width
        tscale_x: data table's scaled value for width
        tscale_y: data table's scaled value for height
        num_cuts: number of cuts for bin
        pad: the padding of title above the plot
        bins: a list of score's range
        bin_labels: a list of labels for score ranges
    """

    # plot number of documents per score range
    fig = plt.figure(figsize=(12, 7))
    ax = fig.add_subplot(111)

    ind = np.arange(num_cuts)  # the x locations for the groups

    # get the counts of documents
    class_counts = dict(df[col_name].value_counts())

    # plot the bars
    for i in range(num_topics):
        topic_label = topic_labels[i]  # model topic's label

        # get scores
        m_class = df[df[col_name] == topic_label][col_score_name]

        # assign scores to bin
        class_array = np.histogram(m_class, bins=bins)

        # plot the bars
        rects = ax.bar(ind + (width * i),
                       class_array[0],
                       width=width,
                       align='center',
                       label=col_name + ' ' + topic_label + ' (' +
                       str(class_counts[topic_label]) + ')')

        # put value on top of each bar
        for rect in rects:
            h = rect.get_height()
            if h > 0:
                ax.text(rect.get_x() + rect.get_width() / 2.,
                        1.01 * h,
                        '%d' % int(h),
                        ha='center',
                        va='bottom')

    # show data table
    cell_colors = [['lightblue', 'lightblue', 'lightblue', 'lightblue']]
    table = plt.table(cellText=table_vals,
                      cellColours=cell_colors,
                      colWidths=[0.1] * 6,
                      rowLabels=trow_label,
                      colLabels=bin_labels,
                      rowColours=['lightblue'],
                      loc='top')
    table.auto_set_font_size(False)
    table.set_fontsize(11)
    table.scale(tscale_x, tscale_y)

    # adjust layout to make room for the table:
    plt.subplots_adjust(left=0.2, bottom=0.2)

    # hide top and right border
    _ = [
        plt.gca().spines[loc].set_visible(False)
        for loc in ['top', 'right', 'left']
    ]

    ax.set_xticks(ind + width)
    ax.set_xticklabels(tuple(bin_labels))
    #ax.set_xlabel(col_score_name, fontsize=13, fontweight='bold')
    ax.get_yaxis().set_visible(False)

    plt.legend(frameon=False)
    plt.title(title,
              fontsize=15,
              verticalalignment='top',
              pad=pad,
              fontweight='bold')
    plt.savefig('images/dist_per_' + '_'.join(col_score_name.split(' ')))
    plt.show()
Esempio n. 51
0
def printPath(pathtemp, fun, num):
    plt.figure(figsize=(10, 10))
    plt.subplot(2, 1, 1)
    ylist = []
    yfitlist = []
    colors = []
    paras = []
    col_labels = []
    row_labels = []
    colorlist = ['black', 'red', 'blue', 'yellow', 'green']
    # pathtemp=eval(repr(pathtemp).replace('\\', '@'))
    path = pathtemp + "处理后的原始数据/"
    # 所有文件夹,第一个字段是次目录的级别
    dirList = []
    # 所有文件
    fileList = []
    # 返回一个列表,其中包含在目录条目的名称
    files = os.listdir(path)
    # print(files)
    # 先添加目录级别
    for f in files:
        if (os.path.isdir(path + '/' + f)):
            # 排除隐藏文件夹。因为隐藏文件夹过多
            if (f[0] == '.'):
                pass
            else:
                # 添加非隐藏文件夹
                dirList.append(f)
        if (os.path.isfile(path + '/' + f)):
            # 添加文件
            fileList.append(f)
    titletext = fileList[0].split()
    # print(fileList[0])
    title = titletext[0] + titletext[1] + "实验数据图"
    # title=ftitletext+"实验数据图"
    colornum = 0
    dt = 0
    # for fl in fileList:
    #     x=[]
    #     y=[]
    #
    #     # 打印文件
    #     #print(fl)
    #     f = open(path + fl)  # 读取完txt再读txt里面的类容
    #     alllines = f.readlines()
    #
    #     for eachLine in alllines:
    #         eachdata = eachLine.split()
    #         x.append(float(eachdata[0]))
    #         y.append(float(eachdata[1]))
    #         dt=float(eachdata[2])
    #     # print(z)
    #     # print(x)
    #     # print(y)
    #     #ax.plot(x,y,z,label=fl)
    #     # plt.plot(x,y,label=fl)
    #     #color = plt.cm.Set2(random.choice(range(plt.cm.Set2.N)))
    #     #dz = hist.flatten()
    #     # color = plt.cm.Set2(random.choice(range(plt.cm.Set2.N)))
    #     # colors.append(color)
    #     color=colorlist[colornum]
    #     colornum+=1
    #     if(fun==4 or fun==2):
    #         plt.scatter(x,y,color=color,label=re.sub(r'[A-Za-z]',"", fl.split("-")[1]),marker="*")  #张老师数据
    #         # plt.scatter(x, y, color=color, label=fl.split(".")[0], marker="*", s=0.8)  # 佳蕾姐数据
    #     elif(fun==6 or fun==5):
    #         xbar=np.asarray(x)+(dt/2)
    #         ybar=np.asarray(y)/dt
    #         plt.bar(xbar,ybar,color=color,width=dt,alpha=0.5)
    #         # plt.scatter(x,y,color=color,label=fl.split(".")[0],marker="*",s=0.8)        #佳蕾姐数据
    #         # plt.scatter(x,y,color=color,label=re.sub(r'[A-Za-z]',"", fl.split("-")[1]),marker="o")
    #     ylist.append(y)
    #
    #
    #
    #

    # 拟合曲线
    fitingpath = ""
    spotdatapath = pathtemp + "处理后的原始数据/"
    if (fun == 1):
        fitingpath = pathtemp + "拟合结果/"
    if (fun == 2):
        fitingpath = pathtemp + "指数拟合结果/"
        paras.append(["测量点", "${I_0}$", "${\\tau}$", "D", "${R^2}$"])
    if (fun == 3):
        fitingpath = pathtemp + "拟合结果/"
    if (fun == 4):
        fitingpath = pathtemp + "双曲线拟合结果/"
        paras.append([
            "测量点", "${I_0}$", "s2", "${\\tau}$", "${\gamma}$", "D", "${R^2}$"
        ])
    if (fun == 5):
        fitingpath = pathtemp + "指数积分形式拟合结果/"
        paras.append(["测量点", "${I_0}$", "${\\tau}$", "D", "${R^2}$"])
    if (fun == 6):
        fitingpath = pathtemp + "双曲线积分形式拟合结果/"
        paras.append([
            "测量点", "${I_0}$", "s2", "${\\tau}$", "${\gamma}$", "D", "${R^2}$"
        ])
    # print("fitingpath"+fitingpath)
    files = os.listdir(fitingpath)
    # print(files)
    # 先添加目录级别
    fileList2 = []
    # print(files)
    for f in files:
        if (os.path.isdir(fitingpath + '/' + f)):
            # print(f)
            # 排除隐藏文件夹。因为隐藏文件夹过多
            if (f[0] == '.'):
                pass
            else:
                # 添加非隐藏文件夹
                dirList.append(f)
        if (os.path.isfile(fitingpath + '/' + f)):
            # print(f)
            # 添加文件
            fileList2.append(f)
    # print(fileList2)
    colornum = 0
    for fl in fileList2:

        # 读取原始数据
        x = []
        y = []
        rawf = open(spotdatapath + fl)
        alllines = rawf.readlines()

        for eachLine in alllines:
            eachdata = eachLine.split()
            x.append(float(eachdata[0]))
            y.append(float(eachdata[1]))
            dt = float(eachdata[2])
        # print(z)
        # print(x)
        # print(y)
        # ax.plot(x,y,z,label=fl)
        # plt.plot(x,y,label=fl)
        # color = plt.cm.Set2(random.choice(range(plt.cm.Set2.N)))
        # dz = hist.flatten()
        # color = plt.cm.Set2(random.choice(range(plt.cm.Set2.N)))
        # colors.append(color)
        color = colorlist[colornum]
        # colornum += 1
        if (fun == 4 or fun == 2):
            plt.scatter(x,
                        y,
                        color=color,
                        label=re.sub(r'[A-Za-z]', "",
                                     fl.split("-")[1]),
                        marker="*")  # 张老师数据
            # plt.scatter(x, y, color=color, label=fl.split(".")[0], marker="*", s=0.8)  # 佳蕾姐数据
        elif (fun == 6 or fun == 5):
            xbar = np.asarray(x) + (dt / 2)
            ybar = np.asarray(y) / dt
            plt.bar(xbar, ybar, color=color, width=dt, alpha=0.5)
            # plt.scatter(x,y,color=color,label=fl.split(".")[0],marker="*",s=0.8)        #佳蕾姐数据
            # plt.scatter(x,y,color=color,label=re.sub(r'[A-Za-z]',"", fl.split("-")[1]),marker="o")
        ylist.append(y)

        # 打印文件
        f = open(fitingpath + fl)  # 读取完txt再读txt里面的类容
        # print(f)
        alllines = f.readlines()
        eachdata = alllines[num].split()
        # print(eachdata[0])
        xfit = np.linspace(x[0], x[-1] + dt, 1000)
        yfit = 0
        yfitspot = 0
        flmain = ""
        if (fun == 1):
            s1 = float(eachdata[0])
            s2 = float(eachdata[1])
            s3 = float(eachdata[2])
            s4 = float(eachdata[3])
            s5 = float(eachdata[4])
            rs = float(eachdata[5])
            paras.append([s1, s2, s3, s4, s5, rs])
            col_labels = ["s1", "s2", "s3", "s4", "s5", "${R^2}$"]
            yfit = s1 * ((s2 + (xfit / s3))**(-s4)) + s5
            yfitspot = s1 * ((s2 + (np.asarray(x) / s3))**(-s4)) + s5
        elif (fun == 2):
            s1 = float(eachdata[0])
            s2 = float(eachdata[1])
            s3 = float(eachdata[2])
            r2 = float(eachdata[3])

            yfit = s1 * (np.exp(-(xfit / s2))) + s3
            yfitspot = s1 * (np.exp(-(np.asarray(x) / s2))) + s3
            flmain = re.sub(r'[A-Za-z]', "", fl.split("-")[1])
            # flmain=fl  #姐蕾姐数据
            # flmain2 = flmain + "指数拟合" + "(优度:" + eachdata[-3] + ")"
            flmain2 = flmain + "指数拟合"
            paras.append([flmain, s1, s2, s3, r2])
        elif (fun == 3):
            s1 = float(eachdata[0])
            s2 = float(eachdata[1])
            s3 = float(eachdata[2])
            s4 = float(eachdata[3])
            s5 = float(eachdata[4])
            r2 = float(eachdata[5])
            paras.append([s1, s2, s3, s4, s5, r2])
            yfit = 0
            yfitspot = 0
        elif (fun == 4):
            s1 = float(eachdata[0])
            s2 = float(eachdata[1])
            s3 = float(eachdata[2])
            s4 = float(eachdata[3])
            s5 = float(eachdata[4])
            r2 = float(eachdata[5])
            paras.append([s1, s2, s3, s4, s5, r2])
            yfit = s1 * ((s2 + (xfit / s3))**(-s4)) + s5
            yfitspot = s1 * ((s2 + (np.asarray(x) / s3))**(-s4)) + s5
            flmain = re.sub(r'[A-Za-z]', "", fl.split("-")[1])  # 张老师拟合
            # flmain =fl.split(".")[0]     #佳蕾姐拟合
            flmain = flmain + "双曲线拟合" + "(优度:" + eachdata[-3] + ")"
        elif (fun == 5):
            print(eachdata)
            s1 = float(eachdata[0])
            s2 = float(eachdata[1])
            s3 = float(eachdata[2])
            r2 = float(eachdata[3])
            TimeSpan = float(eachdata[5])
            print(TimeSpan)
            yfit = s1 * np.exp(-(xfit / s2)) + s3
            temp1spot = np.exp(-np.asarray(x) / s2)
            temp2spot = np.exp(-(np.asarray(x) + TimeSpan) / s2)
            yfitspot = s1 * s2 * (temp1spot - temp2spot) + s3 * TimeSpan
            print(yfitspot)
            flmain = re.sub(r'[A-Za-z]', "", fl.split("-")[1])
            paras.append([flmain, s1, s2, s3, r2])
            flmain2 = flmain + "指数积分拟合"
            # flmain=fl  #姐蕾姐数据
            # flmain2 = flmain + "指数积分形式拟合" + "(优度:" + eachdata[-3] + ")"
        elif (fun == 6):
            xfit = np.linspace(x[0], x[-1] + (x[1] - x[0]), 1000)
            s1 = float(eachdata[0])
            s2 = float(eachdata[1])
            s3 = float(eachdata[2])
            s4 = float(eachdata[3])
            s5 = float(eachdata[4])
            rs = float(eachdata[5])
            col_labels = ["测量点", "s1", "s2", "s3", "s4", "s5", "${R^2}$"]

            # print(s1,s2,s3,s4,s5)
            TimeSpan = float(eachdata[7])
            # fun = float(eachdata[7])
            temp1spot = (1 / (1 + np.asarray(x) / s3))**(s4 - 1)
            temp2spot = (1 / (1 + (np.asarray(x) + TimeSpan) / s3))**(s4 - 1)
            yfit = s1 * ((s2 + (xfit / s3))**(-s4)) + s5
            yfitspot = s1 * s3 * (1 / (s4 - 1)) * (temp1spot -
                                                   temp2spot) + s5 * TimeSpan
            flmain = re.sub(r'[A-Za-z]', "", fl.split("-")[1])  # 张老师数据必要过程
            # flmain = flmain + "双曲线积分拟合" + "(优度:" + eachdata[-3] + ")"
            paras.append([flmain, s1, s2, s3, s4, s5, rs])
            flmain2 = flmain + "双曲线积分拟合"
        yfitlist.append(yfitspot)
        # color=colorlist[colornum]
        colornum += 1
        plt.plot(xfit, yfit, color=color, label=flmain2)
        row_labels.append(flmain)
        # for eachLine in alllines:
        #     eachdata = eachLine.split()
        #     x.append(float(eachdata[0]))
        #     y.append(float(eachdata[1]))
    # print(colors)
    # col_labels = ['col1', 'col2', 'col3']
    # row_labels = ['row1', 'row2', 'row3']
    # table_vals = [[11, 12, 13], [21, 22, 23], [28, 29, 30]]
    # row_labels=["1","2"]
    paras = np.array(paras).T
    # plt.table(cellText=paras,colWidths=[4]*len(col_labels),rowLabels=row_labels, colLabels=col_labels,loc='top',fontsize=5.0,picker=0.5)
    # 转置
    # plt.table(cellText=paras,rowLabels=row_labels,loc='best', colLabels=col_labels)
    for i in range(len(ylist)):
        print(getIndexes(yfitlist[i], ylist[i]))
    plt.title(title)
    plt.xlabel("time/ms", size=12)
    plt.ylabel("cps", size=12)
    font1 = {'size': 10}
    plt.legend(prop=font1)
    plt.legend()
    # plt.table(cellText=paras, colWidths=[0.1,0.1], rowLabels=col_labels, loc='best', colLabels=row_labels,in_layout="TRUE",
    #           fontsize=20)  # 转置
    plt.subplot(2, 1, 2, frameon=True, xticks=[], yticks=[])
    plt.gca().spines['right'].set_color('none')
    plt.gca().spines['top'].set_color('none')
    plt.gca().spines['bottom'].set_color('none')
    plt.gca().spines['left'].set_color('none')
    # print(paras)
    # print(len(col_labels))
    the_table = plt.table(cellText=paras,
                          colWidths=[0.12] * len(paras),
                          fontsize=5,
                          loc='center',
                          cellLoc='center')
    plt.title('参数列表')
    # the_table=plt.table(cellText=paras, colWidths=[0.2] * len(col_labels), rowLabels=col_labels,
    #           colLabels=row_labels, fontsize=5, alpha=0.5,loc='center',cellLoc='center')
    the_table.set_fontsize(20)
    the_table.scale(2.5, 2.58)
    plt.show()
Esempio n. 52
0
            np.argmin(arrayCTCFdistance[:, uppermm]) /
            np.size(arrayCTCFMissmatchGlobal, 0), 2)

        offtarget_data = np.vstack(
            (arrayprofileMissmatch[uppermm], arrayexonsMissmatch[uppermm],
             arrayintronsMissmatch[uppermm], arraypromotersMissmatch[uppermm],
             arrayDNAseMissmatch[uppermm], arrayCTCFMissmatch[uppermm]))
        distance_data = np.vstack(
            (general_distance, exons_distance, introns_distance,
             promoters_distance, dnase_distance, ctcf_distance))
        table_data = np.concatenate((distance_data, offtarget_data), axis=1)

        plt.subplot(2, 2, 2)
        table = plt.table(cellText=table_data,
                          rowLabels=rows,
                          colLabels=columns,
                          loc='center',
                          colWidths=[0.35 for x in columns])
        table.auto_set_font_size(False)
        table.set_fontsize(18)
        table.scale(1, 3)
        plt.axis('off')

        datacount = arrayguidesExtendedProfile[missmatch*7] / \
            (max(arrayguidesExtendedProfile[missmatch*7]))
        data = np.array(datacount, dtype=float)
        data = np.around(data, decimals=1)
        data.shape = (1, len(datacount))

        string = guide[0:20]
        strArray = np.array([list(string)])
Esempio n. 53
0
                print("epoch:", epoch, "sentence: %s/%s" % (j, len(sentences)),
                      "loss", loss)
            j += 1

    print("Elapsed time training:", datetime.now() - t0)
    plt.plot(losses)

    avg_bigram_loss = np.mean(bigram_losses)
    print("avg_bigram_loss:", avg_bigram_loss)
    plt.axhline(y=avg_bigram_loss, color='r', linestyle='-')

    def smoothed_loss(x, decay=0.99):
        y = np.zeros(len(x))
        last = 0
        for t in range(len(x)):
            z = decay * last + (1 - decay) * x[t]
            y[t] = z / (1 - decay**(t + 1))
            last = z
        return y

    plt.plot(smoothed_loss(losses))
    plt.show()

    plt.subplot(1, 2, 1)
    plt.table("Neural Network Model")
    plt.imshow(np.tan(W1).dot(W2))
    plt.subplot(1, 2, 2)
    plt.title("Bigram probs")
    plt.imshow(bigram_probs)
    plt.show()
Esempio n. 54
0
prevTemprature = None
for temprature in tempratureList:
    if prevTemprature != temprature and temprature != 0:
        plt.axhline(temprature, color='gray', linewidth=0.5)

prevTime = None
for t in timeList:
    if prevTime != t and t != 0:
        plt.axvline(t, color='gray', linewidth=0.5)

columns = ('Rate', 'GoalTemprature', 'HoldTime')
cell_text = []
for line in output:
    row_text = []
    row_text.append(str(line[0]))
    row_text.append(str(line[1]))
    if line[2] < 1 and not line[2] == 0:
        minutes = line[2] * 60
        row_text.append(str(minutes) + " [min]")
    else:
        row_text.append(str(line[2]) + " [h]")
    cell_text.append(row_text)
# Add a table at the bottom of the axes
the_table = plt.table(cellText=cell_text,
                      colLabels=columns,
                      loc='bottom',
                      bbox=[0, -0.6, 0.7, 0.4])

plt.subplots_adjust(left=0.2, bottom=0.4)
plt.show()
Esempio n. 55
0
def cap_f_bar(nodes,fig_format,style,title_font,figsize,directory,cap_f_inp,colors,names,kind,table_font,v_round):
    
    import matplotlib.pyplot as plt
    from calliope_graph.graphs import style_check 
    
    cap_f = cap_f_inp.copy()
    style = style_check(style)
    plt.style.use(style) 
    
    colors = colors[cap_f.index]
    cap_f.index = names[cap_f.index]
    cap_f = cap_f.round(v_round)
    
    if kind == 'bar':
    
        for i in nodes:
            
            cap_f[i].plot(kind='bar',stacked=True,color=colors,figsize=figsize,legend=False)
          
            
            
            plt.title('{} capacity factor'.format(names[i]),fontsize=title_font)
            plt.savefig('{}\{}capacity_factor.{}'.format(directory,i,fig_format),bbox_inches='tight',dpi=150)
            plt.show()
        
    elif kind == 'table':
        
        fig,(ax) = plt.subplots(1,figsize=figsize)
        table = plt.table(cellText=cap_f.values,
                                  rowColours= colors,
                                  rowLabels= cap_f.index,
                                  colLabels = nodes,
                                  loc='upper center',
                                  rowLoc ='center',
                                  colLoc='center',
                                  cellLoc='center')    
        
        
        table.set_fontsize(table_font)
        table.scale(1, 2)
        plt.box(on=None)
        ax = plt.gca()
        ax.get_xaxis().set_visible(False)
        ax.get_yaxis().set_visible(False)  
        
        plt.title('Capacity Factor',fontsize=title_font)
        
        plt.savefig('{}\system_capacity_factor.{}'.format(directory,fig_format),bbox_inches='tight',dpi=150)
        
    
    else:
        raise ValueError('/kind/ should be one of the followings: \n 1. /table/ \n 2. /bar/')    
    
    
    
    
    
    
    
    
    
    
    
    
    
        
        
        
        
        
        
        
        
Esempio n. 56
0
    fig.add_subplot(2, 2, i)
    x = np.arange(3) + 0.4
    plt.bar(x, [
        precip['wsl_sum'], precip['interpolated_sum'],
        precip['combiprecip_sum']
    ],
            align='center',
            width=0.4)
    plt.xlim([0, 2.4 + 0.4])
    labels = ['LWF', 'Interpolated', 'Combiprecip']
    plt.xticks(x, labels)
    plt.title(seasonlabels[i - 1])
    plt.ylabel('summed precipitation [mm]')

    # Add table with values below
    plt.table(cellText=[['%.1f' % precip['wsl_sum'],'%.1f' % precip['interpolated_sum'],'%.1f' % precip['combiprecip_sum']]],\
              bbox = [0.0,-0.12, 1.0, 0.05],cellLoc='center',rowLoc='center',fontsize=20)

    # Save figure if season is full
    if i == 4:
        plt.suptitle(nowdate.strftime('%Y'), fontsize=40)
        saveas = '\precip_statistics_' + treenetstation + '_seasonalsum_'
        plt.savefig(figpath + saveas + nowdate.strftime('%Y') + '.png',
                    bbox_inches='tight')

    # Increase subplot index
    i += 1

#---------------------------------------------------------
# Create plots of yearly sums
#---------------------------------------------------------
# Find latest starting date
Esempio n. 57
0
cell_text = []

for row in range(n_rows):
    plt.plot(index, data[row], bar_width, color=colors[row])
    y_offset = y_offset + data[row]
    cell_text.append(['%1.1f' % (x / 1000.0) for x in y_offset])

# Reverse colors and text labels to display table contents with
# color.
colors = colors[::-1]
cell_text.reverse()

# Add a table at the bottom
the_table = plt.table(cellText=cell_text,
                      rowLabels=rows,
                      rowColours=colors,
                      colLabels=columns,
                      loc='bottom')

# make space for the table:
plt.subplots_adjust(left=0.2, bottom=0.2)
plt.ylabel("Price in Rs.{0}'s".format(value_increment))
plt.yticks(values * value_increment, ['%d' % val for val in values])
plt.xticks([])
plt.title('Cost price increase')

# plt.show()-display graph
# Create image. plt.savefig ignores figure edge and face color.
fig = plt.gcf()
plt.savefig('pyplot-table-original.png',
            bbox_inches='tight',
Esempio n. 58
0
def plot_alg(df, data_df, mk, mn, colors, ylims, p_val_dict, mode): 
    """
    mk: Metric Key
    mn: Metric Name 
    """
    if mode != 'ALL':
        plt.figure(figsize=(12,2))
    else:
        plt.figure(figsize=(12,3))
    
    #plt.ylim([0,100])
    plt.grid(True)
    plt.xlabel('Prevalence (%)')
    plt.ylabel(mn + ' (%)')
    plt.title('Prevalence vs. ' + mn)
    frame1 = plt.gca()
    frame1.axes.get_xaxis().set_visible(False)
    frame1.axes.get_yaxis().set_visible(True)

    frame1.set_facecolor('white')
    if len(df['alg'].unique()) == 3:
        pos = [-0.015, 0, 0.015]
    elif (len(df['alg'].unique()) == 5): 
        pos = [-0.01, -0.005,0,0.005, 0.01]
    
    cell_text =  []
    table_colors = []
    table_rows = []
    table_columns = ['0.1%', '0.2%', '0.3%', '0.4%', '0.5%']

    for c, alg in enumerate(df['alg'].unique()):
        print(mn, alg, c, colors[alg])
        tdf = df.loc[df['alg'] == alg][['prevalence', mk, mk + '_025', mk + '_975']].sort_values(by=['prevalence'])
        plt.scatter(tdf['prevalence'] + pos[c], tdf[mk], color=colors[alg], marker='o', label=alg, s=20)
        plt.errorbar(tdf['prevalence'] + pos[c], tdf[mk], yerr=[tdf[mk + '_025'], tdf[mk + '_975']], ecolor=colors[alg], capsize=3, barsabove=True, ls='none', linewidth=1)
        plt.ylim(ylims[mk])
        table_colors.append(colors[alg])
        table_rows.append(alg)
        
        # print(tdf[mk])
        # print(tdf[mk + '_025'])
        # print(tdf[mk + '_975'])
        
        if (mk != 'npv'):
            if (mk in ['sens', 'spec', 'npv', 'per_det']):
                cell_text.append(['%0.1f (%0.1f - %0.1f)' % ((x,y,z)) for (x,y,z) in zip(tdf[mk], tdf[mk] - tdf[mk + '_025'], tdf[mk] + tdf[mk + '_975'])])
            else:
                cell_text.append(['%0.2f (%0.2f - %0.2f)' % ((x,y,z)) for (x,y,z) in zip(tdf[mk], tdf[mk] - tdf[mk + '_025'], tdf[mk] + tdf[mk + '_975'])])
        else:
            cell_text.append(['%0.2f (%0.2f - %0.2f)' % ((x,y,z)) for (x,y,z) in zip(tdf[mk], tdf[mk] - tdf[mk + '_025'], tdf[mk] + tdf[mk + '_975'])])

        
    for key in p_val_dict.keys(): 
        
        p_val_list = []
        table_rows.append(key)
        table_colors.append('white')

        for prev in tdf['prevalence'].unique(): 
            
            
        
            pvd = p_val_dict[key]
            tdf2 = data_df.loc[(data_df['prevalence'] == prev) & (data_df['alg'].isin(pvd))]
        
            alg1 = tdf2.loc[tdf2['alg'] == pvd[0]][mk]
            alg2 = tdf2.loc[tdf2['alg'] == pvd[1]][mk]

            # Step 1. Check normality 
            _, norm_p_1 = st.shapiro(alg1)
            _, norm_p_2 = st.shapiro(alg2)
            
            
            mean_1 = np.mean(alg1)
            mean_2 = np.mean(alg2)
            
            print(mn)
            
            if ((norm_p_1 < 0.05) or (norm_p_2 < 0.05)): # Not normal, use mann-whitney U statistic 
                stat, p = st.mannwhitneyu(alg1, alg2)
            
                print('NON-NORMAL - mean_1: %0.5f, mean_2: %0.4f, test_stat: %0.4f, p-val: %0.4f'\
                  %(mean_1, mean_2, stat, p))
            
                if (p < 0.0001):
                    p_val_string = '<0.0001'
                else:
                    p_val_string = ('%0.4f' % (p))
                p_val_list.append(p_val_string)
            else: # Both normal, use 1 sided t-test 
                big = None 
                small = None 
                
                if (mean_1 > mean_2):  
                    big = alg1
                    small = alg2
                elif (mean_1 <= mean_2):
                    big = alg2 
                    small = alg1
            
                stat, p = st.ttest_ind(big, small, equal_var=False)
                print('NORMAL - mean_1: %0.4f, mean_2: %0.4f, test_stat: %0.4f, p-val: %0.40f'\
                      %(np.mean(big), np.mean(small), stat, p))  

                s1sq = np.var(big)    
                n1 = len(big)
                v1 = n1-1
                
                s2sq = np.var(small)
                n2 = len(small)
                v2 = n2-1
                
                my_dof = ((s1sq/n1 + s2sq/n2)**2)/((s1sq**2)/((n1**2)*v1) + (s2sq**2)/((n2**2)*v2))
                
                man_p_val = 1 - st.t.cdf(stat, my_dof)
                print('Manually calculated p-val: %0.10f' % (man_p_val))
                
                if (p < 0.0001):
                    p_val_string = '<0.0001'
                else:
                    p_val_string = ('%0.4f' % (p))
            
                p_val_list.append(p_val_string)
                pass

        input('Batman')
        cell_text.append(p_val_list)

        # print('\n\n\nTable Rows:')
        # print(table_rows)   
        # print('\n\n\nCell Text:')         
        # print(cell_text)
        
        # print('\n')
        
        
            # table_rows.append(key)

    # print('NOW PRINTING TABLE ROWS!')
    # print(table_rows)
    # print('Now printing cell text!')
    # print(cell_text)

    # for key in p_val_dict.keys(): # Iterate through p-values, update row labels and calculate p-values for each prevalence 
    #     print(key)
    #     # table_rows.append(key)
    #     # cell_text.append(['0' for x in range(1,6)])
        
    # print(table_rows)
    # print(table_columns)
    # print(cell_text)
    
    # print('\n' + metric)
    # p_val_list = []
    # for i in range(0,len(A['prev'])):
        
    #     # Okay. I need to determine the p-values to show in the table.
    #     f_data = e(F[metric + '_data'][i])
    #     e_data = e(E2e[metric + '_data'][i])         
        
    #     # Step 1. Check if both are normal:
    #     _, f_norm_p = st.shapiro(f_data)
    #     _, e_norm_p = st.shapiro(e_data)
        
    #     f_mean = np.mean(f_data)
    #     e_mean = np.mean(e_data)
        
    #     if ((f_norm_p < 0.05) or (e_norm_p < 0.05)): # Not normal, use mann-whitney U-statistic
    #         stat, p = st.mannwhitneyu(f_data, e_data)
            
    #         print('i:%d, NON-NORMAL - f-mean: %0.3f, e-mean: %0.3f, test_stat: %0.3f, p-val: %0.3f'\
    #               %(i, f_mean, e_mean, stat, p))
            
    #         if (p < 0.001):
    #             p_val_string = '<0.001'
    #         else:
    #             p_val_string = ('%0.3f' % (p))
            
    #         p_val_list.append(p_val_string)
    #     else:   # both normal, use 1 sided t-test
    #         # My goal is to test if one is bigger than the other 
    #         if (e_mean > f_mean): 
    #             big = e_data
    #             small = f_data
    #         else:
    #             big = f_data
    #             small = e_data
        
    #         stat, p = st.ttest_ind(big, small, equal_var=False)
            
    #         print('i:%d, NORMAL - f-mean: %0.3f, e-mean: %0.3f, test_stat: %0.3f, p-val: %0.10f'\
    #               %(i, f_mean, e_mean, stat, p))
            
    #         s1sq = np.var(big)    
    #         n1 = len(big)
    #         v1 = n1-1
            
    #         s2sq = np.var(small)
    #         n2 = len(small)
    #         v2 = n2-1
            
    #         my_dof = ((s1sq/n1 + s2sq/n2)**2)/((s1sq**2)/((n1**2)*v1) + (s2sq**2)/((n2**2)*v2))
            
    #         man_p_val = 1 - st.t.cdf(stat, my_dof)
    #         print('Manually calculated p-val: %0.10f' % (man_p_val))
            
    #         if (p < 0.001):
    #             p_val_string = '<0.001'
    #         else:
    #             p_val_string = ('%0.3f' % (p))
        
    #         p_val_list.append(p_val_string)
    #         pass
        
    # cell_text.append(p_val_list)
    
    #table_rows.append('APRI vs. ENS_APRI p-value')
    ts_x =0
    te_x = 1-ts_x
    
    ts_y = -0.75
    te_y = 0.75
    
    the_table = plt.table(cellText=cell_text,
                  rowLabels=table_rows,
                  rowColours=table_colors,
                  colLabels=table_columns,
                  cellLoc='center',
                  bbox = [ts_x,ts_y,te_x,te_y], # (left-x, bottom-y, length-x, length-y)
                  loc='bottom')
    the_table.auto_set_font_size(False)
    for (row, col), cell in the_table.get_celld().items():
        if (row == 0):
            cell.set_text_props(fontproperties=FontProperties(weight='bold'))
   
    plt.show()

    return None 
Esempio n. 59
0
                            print("missing : ", full_path)
                    # print("MSE : ", mse)
                    # print("MSE mean", np.mean(mse))

                    cell_text_row.append("%.3f" %
                                         mean_squared_error(Y, results) +
                                         " // " +
                                         "%.3f" % r2_score(Y, results))

                cell_text.append(cell_text_row)

            title = "{} trace-regression hyperparameter evaluation".format(
                modality)
            the_table = plt.table(
                cellText=cell_text,
                rowLabels=rows,
                colLabels=columns,
                loc="center",
            )
            the_table.scale(4, 2.5)
            plt.draw()
            plt.title(title)

            plt.savefig(
                os.path.join(
                    path,
                    "regression_hyperparameters_{}.png".format(titles[i])),
                dpi=fig.dpi,
                bbox_inches="tight",
                pad_inches=0.5,
            )
            i += 1
Esempio n. 60
0
def validation(M,df_encoded,results,Z,method,min_K,max_K,automatic=None,pp=None,gap=None,Tp=None):
    ##############################################################################
    # HOW MANY CLUSTERS?
    ###############################################################################
    # bootstrap method - sampling without replacement

    #dictionary to store all computed indexes for each number of clusters K=min_K,...max_K
    nn_history = defaultdict(dict)
    trees = defaultdict(dict)
    dicio_statistics = {k:{} for k in range(min_K,max_K)}

    for k in range(min_K,max_K):
        for index in indexes:
            dicio_statistics[k][index] = []

        c_assignments_original = cut_tree(Z, k)
        # list of clusters for the clustering result with the original data
        partition_original = cluster_indices(c_assignments_original, df_encoded.index.tolist())
        trees[k] = partition_original


    #for each bootstrap sample
    for i in range(M):
        # sampling rows of the original data
        idx = np.random.choice(len(df_encoded), int((3/4)*len(df_encoded)), replace = False)
        idx = np.sort(idx)
        #get all the possible combinations between the sampled patients
        patient_comb_bootstrap = list(itertools.combinations(df_encoded.loc[idx,'id_patient'],2))
        patient_comb_bootstrap = pd.DataFrame(patient_comb_bootstrap,columns = ['patient1','patient2'])
        #extract the scores regarding the previous sampled combinations to be used in hierarchical clustering
        results_bootstrap = pd.merge(results, patient_comb_bootstrap, how='inner', on=['patient1','patient2'])
        # Hierarchical Clustering of the bootstrap sample
        Z_bootstrap = linkage(results_bootstrap['score'],method)

        #for each number of clusters k=min_K,...,max_K
        for k, partition in trees.items():

            c_assignments_bootstrap = cut_tree(Z_bootstrap,k)
            #list of clusters for the clustering result with the bootstrap sample
            partition_bootstrap = cluster_indices(c_assignments_bootstrap,idx)
            #compute 4 different cluster external indexes between the partitions
            #computed_indexes = cluster_external_index(partition,partition_bootstrap)
            computed_indexes = clustereval.calculate_external(partition, partition_bootstrap)



            #print(computed_indexes)
            for pos, index in enumerate(external_indexes):
                dicio_statistics[k][index].append(computed_indexes[pos])

    for k, partition in trees.items():
        calc_idx = clustereval.calculate_internal(results[['patient1', 'patient2', 'score']], partition, k, trees[max_K - 1])
        for index in internal_indexes:
            dicio_statistics[k][index].append(calc_idx[index])
    ###########################################################################
    #  DECISION ON THE NUMBER OF CLUSTERS
    # The correct number of clusters is the k that yield most maximum average values of
    # clustering indices.
    # Also the k found before needs to have a low value of standard deviation - it has to
    # be the minimum between all k's or a value that is somehow still low compared to others
    ###########################################################################

    #dataframe that stores the clustering indices averages for each k
    col = indexes.copy()
    col.extend(['k', 'k_score_avg'])
    df_avgs = pd.DataFrame(index = range(min_K,max_K),columns = col, dtype='float')
    #dataframe that stores the AR and AW indices standard deviations for each k
    df_stds = pd.DataFrame(index = range(min_K,max_K),columns = col, dtype = 'float')

    #computing the means and standard deviations
    for k in range(min_K,max_K):
        df_avgs.loc[k]['k'] = k
        df_stds.loc[k]['k'] = k
        for index in indexes:
            if index not in internal_indexes:
                df_avgs.loc[k][index] = mean(dicio_statistics[k][index])
                df_stds.loc[k][index] = stdev(dicio_statistics[k][index])
            else:
                df_avgs.loc[k][index] = dicio_statistics[k][index][0]
                df_stds.loc[k][index] = dicio_statistics[k][index][0]

        df_avgs.loc[k]['k_score_avg'] = 0
        df_stds.loc[k]['k_score_std'] = 0

        #df_stds.loc[k]['k_score_std_2'] = 0

    #weights given to each clustering indice, Rand Index does not value as much as the other indices
    weights = {index: 1/len(indexes) for index in indexes}
    #found the maximum value for each clustering index and locate in which k it happens
    # compute the scores for each k as being the sum of weights whenever that k has maximums of clustering indices
    columns = df_avgs.columns
    analyzed_columns = columns[2:-3]
    for column in analyzed_columns:

        if column in min_indexes:
            idx_min = df_avgs[column].idxmin()
            df_avgs.loc[idx_min]['k_score_avg'] = df_avgs.loc[idx_min]['k_score_avg'] + weights[column]
            continue


        idx_max = df_avgs[column].idxmax()
        df_avgs.loc[idx_max]['k_score_avg'] = df_avgs.loc[idx_max]['k_score_avg'] + weights[column]

    #idx_min_s_dbw = df_avgs['s_dbw'].idxmin()
    #idx_min_cvnn = df_avgs['cvnn'].idxmin()
    #df_avgs.loc[idx_min_s_dbw]['k_score_avg'] = df_avgs.loc[idx_min_s_dbw]['k_score_avg'] + weights['s_dbw']
    #df_avgs.loc[idx_min_cvnn]['k_score_avg'] = df_avgs.loc[idx_min_cvnn]['k_score_avg'] + weights['cvnn']

    #final number of clusters chosen by analysing df_avgs
    final_k = df_avgs['k_score_avg'].idxmax()


    if(automatic==0 or automatic==1):

        fig1 = plt.figure(figsize=(10,5))
        ax = plt.gca()
        ax.xaxis.set_visible(False)
        ax.yaxis.set_visible(False)
        ax.axis('tight')
        ax.axis('off')
        #colLabels=df_avgs.loc[:, df_avgs.columns != 'k_score_avg'].columns
        colLabels1 = external_indexes.copy()
        colLabels1.append('k')
        cell_text1 = []
        for row in range(len(df_avgs)):
            cell_text1.append(df_avgs.iloc[row,list(range(len(external_indexes))) + [-2]].round(decimals=3))
        plt.title('Average values of eleven external indices \n gap: %.2f, Tp: %.2f, %s link' %(gap,Tp,method))
        the_table = plt.table(cellText=cell_text1, colLabels=colLabels1, loc='center',cellLoc='center')
        #the_table.auto_set_font_size(False)
        #the_table.set_fontsize(4)
        fig1.text(0.1, 0.01, "R = Rand, AR = Adjusted Rand, FM = Fowlkes and Mallows, J = Jaccard, AW = Adjusted Wallace, "
                      "VD = Van Dongen, H = Huberts, H' = Huberts Normalized, F = F-Measure, "
                      "VI = Variation of information, MS = Minkowski", fontsize=5)
        pp.savefig(fig1)



        fig2 = plt.figure(3, figsize=(10, 5))
        ax = plt.gca()
        ax.xaxis.set_visible(False)
        ax.yaxis.set_visible(False)
        ax.axis('tight')
        ax.axis('off')
        # colLabels=df_avgs.loc[:, df_avgs.columns != 'k_score_avg'].columns
        colLabels2 = internal_indexes.copy()
        colLabels2.append('k')
        cell_text2 = []
        for row in range(len(df_avgs)):
            cell_text2.append(df_avgs.iloc[row, list(range(len(external_indexes), len(indexes))) + [-2]].round(decimals=3))
        plt.title('Average values of six internal indices \n gap: %.2f, Tp: %.2f, %s link' % (gap, Tp, method))
        plt.table(cellText=cell_text2, colLabels=colLabels2, loc='center', cellLoc='center', fontsize=20)
        pp.savefig(fig2)


        #bar chart of standard deviation - standard deviation of all measures
        # Create a figure instance
    #    plt.figure(2)
    #    df_stds.loc[:,df_stds.columns != 'k'].plot.bar(figsize=(15,8))
    #    plt.title('Standard deviation of five measures versus number of clusters',fontsize=25)
    #    plt.xlabel('Number of clusters',labelpad=20,fontsize=20)
    #    plt.ylabel('Standard deviation',labelpad=10,fontsize=20)
    #    plt.xticks(size = 20)
    #    plt.yticks(size = 20)
    #    plt.show()


        fig3 = plt.figure(4)
        df_stds.loc[:,'AR'].plot.bar(figsize=(15,8),color='forestgreen')
        plt.title('Standard deviation of Adjusted Rand versus number of clusters \n gap: %.2f, Tp: %.2f, %s link' %(gap,Tp,method),fontsize=25)
        plt.xlabel('Number of clusters',labelpad=20,fontsize=15)
        plt.ylabel('Standard deviation',labelpad=10,fontsize=15)
        plt.xticks(size = 20)
        plt.yticks(size = 20)
        #plt.show()

        pp.savefig(fig3)


    return [df_avgs,df_stds,final_k]