Esempio n. 1
0
def set_pow2format(ax, locs):
    formatter = FuncFormatter(pow2formatter)
    ax.xaxis.set_major_formatter(formatter)
    ax.xaxis.set_minor_formatter(NullFormatter())
    ax.set_xticks(locs)
             linestyle='--',
             label=labs[count])
    count += 1
plt.xlabel('Iteration')
plt.ylabel('Train loss')
plt.xscale('log')
plt.grid()

ax = fig.add_subplot(224)

plt.plot(SGDfc['0.1']['HD Multiplicative']['val_loss'],
         color='black',
         label=r'SGDM HD $\alpha_0=0.02$')
count = 0
for i in list(SGDfc.keys()):
    plt.plot(SGDfc[i]['HD']['val_loss'],
             color=cols[count],
             linestyle='-',
             label=labsHD[count])
    plt.plot(SGDfc[i]['Keras']['val_loss'],
             color=lcols[count],
             linestyle='--',
             label=labs[count])
    count += 1
plt.yscale('log')
plt.ylabel('Validation loss')
plt.xlabel('Epoch')
plt.grid()

plt.gca().yaxis.set_minor_formatter(NullFormatter())
plt.show()
Esempio n. 3
0
import os
import numpy as np
import netCDF4
import salem

from oggm.utils import entity_task

import cleo

# Local imports
import oggm.cfg as cfg

# Module logger
log = logging.getLogger(__name__)

nullfmt = NullFormatter()  # no labels


def truncate_colormap(cmap, minval=0.0, maxval=1.0, n=256):
    """Remove extreme colors from colormap."""
    new_cmap = colors.LinearSegmentedColormap.from_list(
        'trunc({n},{a:.2f},{b:.2f})'.format(n=cmap.name, a=minval, b=maxval),
        cmap(np.linspace(minval, maxval, n)))
    return new_cmap


def _plot_map(plotfunc):
    """
    Decorator for common Cleo.Map plotting logic
    """
    commondoc = """
Esempio n. 4
0
def scatter_hist(stats_list_x,
                 stats_list_y,
                 labels=None,
                 nbins=200,
                 s=5,
                 prct_bounds=[0.1, 99.9]):

    if labels is None:
        labels = [None] * len(stats_list_x)

    x_lb = np.percentile(np.hstack(stats_list_x), prct_bounds[0])
    x_hb = np.percentile(np.hstack(stats_list_x), prct_bounds[1])
    x_bins = np.linspace(x_lb, x_hb, nbins)

    y_lb = np.percentile(np.hstack(stats_list_y), prct_bounds[0])
    y_hb = np.percentile(np.hstack(stats_list_y), prct_bounds[1])
    y_bins = np.linspace(y_lb, y_hb, nbins)

    ###
    # Parts C&P'd from https://matplotlib.org/examples/pylab_examples/scatter_hist.html
    ###
    nullfmt = NullFormatter()  # no labels

    # definitions for the axes
    left, width = 0.1, 0.65
    bottom, height = 0.1, 0.65
    bottom_h = left_h = left + width + 0.02

    rect_scatter = [left, bottom, width, height]
    rect_histx = [left, bottom_h, width, 0.2]
    rect_histy = [left_h, bottom, 0.2, height]

    # start with a rectangular Figure
    plt.figure(1, figsize=(8, 8))

    axHistx = plt.axes(rect_histx)
    axHisty = plt.axes(rect_histy)

    # no labels
    axHistx.xaxis.set_major_formatter(nullfmt)
    axHisty.yaxis.set_major_formatter(nullfmt)

    axScatter = plt.axes(rect_scatter)

    # the scatter plot:
    alpha = 1 / len(stats_list_x)
    colors = ["c", "m", "c", "y"]
    for x, y, color, label in zip(stats_list_x, stats_list_y, colors, labels):

        axHistx.hist(x, bins=x_bins, color=color, alpha=alpha, density=True)
        axHisty.hist(
            y,
            bins=y_bins,
            color=color,
            alpha=alpha,
            density=True,
            orientation="horizontal",
        )

        axHistx.set_xlim(axScatter.get_xlim())
        axHisty.set_ylim(axScatter.get_ylim())

        axScatter.scatter(x, y, s=s, c=color, alpha=alpha, label=label)

        axScatter.set_xlim((x_lb, x_hb))
        axScatter.set_ylim((y_lb, y_hb))

    if not np.all(np.array([label is None for label in labels])):
        plt.legend(loc="upper right")
Esempio n. 5
0
    def __init__(self,
                 fig=None,
                 rotation=30,
                 subplot=None,
                 rect=None,
                 aspect=80.5):
        r"""Create SkewT - logP plots.

        Parameters
        ----------
        fig : matplotlib.figure.Figure, optional
            Source figure to use for plotting. If none is given, a new
            :class:`matplotlib.figure.Figure` instance will be created.
        rotation : float or int, optional
            Controls the rotation of temperature relative to horizontal. Given
            in degrees counterclockwise from x-axis. Defaults to 30 degrees.
        subplot : tuple[int, int, int] or `matplotlib.gridspec.SubplotSpec` instance, optional
            Controls the size/position of the created subplot. This allows creating
            the skewT as part of a collection of subplots. If subplot is a tuple, it
            should conform to the specification used for
            :meth:`matplotlib.figure.Figure.add_subplot`. The
            :class:`matplotlib.gridspec.SubplotSpec`
            can be created by using :class:`matplotlib.gridspec.GridSpec`.
        rect : tuple[float, float, float, float], optional
            Rectangle (left, bottom, width, height) in which to place the axes. This
            allows the user to place the axes at an arbitrary point on the figure.
        aspect : float, int, or 'auto', optional
            Aspect ratio (i.e. ratio of y-scale to x-scale) to maintain in the plot.
            Defaults to 80.5. Passing the string ``'auto'`` tells matplotlib to handle
            the aspect ratio automatically (this is not recommended for SkewT).

        """
        if fig is None:
            import matplotlib.pyplot as plt
            figsize = plt.rcParams.get('figure.figsize', (7, 7))
            fig = plt.figure(figsize=figsize)
        self._fig = fig

        if rect and subplot:
            raise ValueError(
                "Specify only one of `rect' and `subplot', but not both")

        elif rect:
            self.ax = fig.add_axes(rect, projection='skewx', rotation=rotation)

        else:
            if subplot is not None:
                # Handle being passed a tuple for the subplot, or a GridSpec instance
                try:
                    len(subplot)
                except TypeError:
                    subplot = (subplot, )
            else:
                subplot = (1, 1, 1)

            self.ax = fig.add_subplot(*subplot,
                                      projection='skewx',
                                      rotation=rotation)

        # Set the yaxis as inverted with log scaling
        self.ax.set_yscale('log')

        # Override default ticking for log scaling
        self.ax.yaxis.set_major_formatter(ScalarFormatter())
        self.ax.yaxis.set_major_locator(MultipleLocator(100))
        self.ax.yaxis.set_minor_formatter(NullFormatter())

        # Needed to make sure matplotlib doesn't freak out and create a bunch of ticks
        # Also takes care of inverting the y-axis
        self.ax.set_ylim(1050, 100)
        self.ax.yaxis.set_units(units.hPa)

        # Try to make sane default temperature plotting ticks
        self.ax.xaxis.set_major_locator(MultipleLocator(10))
        self.ax.xaxis.set_units(units.degC)
        self.ax.set_xlim(-40, 50)
        self.ax.grid(True)

        self.mixing_lines = None
        self.dry_adiabats = None
        self.moist_adiabats = None

        # Maintain a reasonable ratio of data limits. Only works on Matplotlib >= 3.2
        if matplotlib.__version__[:3] > '3.1':
            self.ax.set_aspect(aspect, adjustable='box')
Esempio n. 6
0
def plot(i12ind1, i12ind2, i12val, orbinit, orbfinal, thresh, s1index,
         s1value):
    try:
        import matplotlib.pyplot as plt
        import matplotlib.lines as mlines
        from matplotlib.ticker import NullFormatter
    except ImportError:
        if log.do_warning:
            log.warn('Skipping plots because matplotlib was not found.')
        return

    norb = orbfinal - orbinit
    orbitals = np.arange(orbinit, orbfinal)
    theta = 2 * np.pi * (orbitals - orbinit) / (norb)
    r = 22 * np.ones(norb, int) - 3.00 * ((orbitals - orbinit) % 3)

    plt.figure(figsize=(10, 5))
    ax = plt.subplot(121, polar=True)
    ax.grid(False)
    ax.set_theta_zero_location("N")
    ax.set_theta_direction(-1)

    plt.plot(theta, r, 'o', markersize=12, alpha=0.2)
    for i in range(len(orbitals)):
        plt.annotate(
            i + 1 + orbinit,
            xy=(theta[i], r[i]),
            xytext=(0, 0),
            textcoords='offset points',
            ha='center',
            va='bottom',
            fontsize=8,
            fontweight='bold',
        )

    ax.yaxis.set_data_interval(0, 22.5)
    ax.xaxis.set_major_formatter(NullFormatter())
    ax.yaxis.set_major_formatter(NullFormatter())
    legend = []
    for ind in range(len(i12val)):
        if i12val[ind] >= thresh:
            if i12val[ind] >= 0.0001 and i12val[ind] < 0.001:
                plt.plot([
                    theta[i12ind1[ind] - orbinit],
                    theta[i12ind2[ind] - orbinit]
                ], [r[i12ind1[ind] - orbinit], r[i12ind2[ind] - orbinit]],
                         ':',
                         lw=2,
                         color='orange')
            if i12val[ind] >= 0.001 and i12val[ind] < 0.01:
                plt.plot([
                    theta[i12ind1[ind] - orbinit],
                    theta[i12ind2[ind] - orbinit]
                ], [r[i12ind1[ind] - orbinit], r[i12ind2[ind] - orbinit]],
                         '-.',
                         lw=2,
                         color='g')
            if i12val[ind] >= 0.01 and i12val[ind] < 0.1:
                plt.plot([
                    theta[i12ind1[ind] - orbinit],
                    theta[i12ind2[ind] - orbinit]
                ], [r[i12ind1[ind] - orbinit], r[i12ind2[ind] - orbinit]],
                         '--',
                         lw=2,
                         color='r')
            if i12val[ind] >= 0.1:
                plt.plot([
                    theta[i12ind1[ind] - orbinit],
                    theta[i12ind2[ind] - orbinit]
                ], [r[i12ind1[ind] - orbinit], r[i12ind2[ind] - orbinit]],
                         '-',
                         lw=3,
                         color='b')

    blue_line = mlines.Line2D([], [],
                              color='blue',
                              marker='',
                              lw=3,
                              ls='-',
                              label='0.1')
    red_line = mlines.Line2D([], [],
                             color='red',
                             marker='',
                             lw=2,
                             ls='--',
                             label='0.01')
    green_line = mlines.Line2D([], [],
                               color='green',
                               marker='',
                               ls='-.',
                               lw=2,
                               label='0.001')
    orange_line = mlines.Line2D([], [],
                                color='orange',
                                marker='',
                                ls=':',
                                lw=2,
                                label='0.0001')

    if thresh >= 0.0001 and thresh < 0.001:
        legend.append(blue_line)
        legend.append(red_line)
        legend.append(green_line)
        legend.append(orange_line)
    if thresh >= 0.001 and thresh < 0.01:
        legend.append(blue_line)
        legend.append(red_line)
        legend.append(green_line)
    if thresh >= 0.01 and thresh < 0.1:
        legend.append(blue_line)
        legend.append(red_line)
    if thresh >= 0.1:
        legend.append(blue_line)

    plt.legend(handles=legend, loc='center', fancybox=True, fontsize=10)
    plt.title('Mutual information')

    ax2 = plt.subplot(122)
    ax2.axis([orbinit, orbfinal, 0, 0.71])
    ax2.vlines(s1index, [0], s1value, color='r', linewidth=2, linestyle='-')
    plt.ylabel('single-orbital entropy')
    plt.xlabel('Orbital index')
    plt.plot(s1index, s1value, 'ro', markersize=8)

    plt.savefig('orbital_entanglement.png', dpi=300)
Esempio n. 7
0
def vis_accuracy(X, Y, title1='', title2='', xlab='', ylab=''):
    '''
    Arg
    X = a list of tuple where a tuple = (X_values, accuracy)
    Y = a list of tuple where a tuple = (y_values, accuracy)
    '''
    # data for the scatter plot
    x = list(map(lambda x: x[0], X))
    y = list(map(lambda x: x[0], Y))

    # data for the best fit plot
    x2, acc_x = list(zip(*sorted(X, key=lambda x: x[0])))
    y2, acc_y = list(zip(*sorted(Y, key=lambda x: x[0])))

    nullfmt = NullFormatter()  # no labels

    # definitions for the axes
    left, width = 0.1, 0.65
    bottom, height = 0.1, 0.65
    bottom_h = left_h = left + width + 0.02

    rect_scatter = [left, bottom, width, height]
    rect_linex = [left, bottom_h, width, 0.2]
    rect_liney = [left_h, bottom, 0.2, height]

    # start with a rectangular Figure
    plt.figure(1, figsize=(8, 8))

    axScatter = plt.axes(rect_scatter)
    axLinex = plt.axes(rect_linex)  #, sharey=axScatter)
    axLiney = plt.axes(rect_liney)  #, sharex=axScatter)

    # no labels
    axLinex.xaxis.set_major_formatter(nullfmt)
    axLiney.yaxis.set_major_formatter(nullfmt)

    # the scatter plot:
    axScatter.scatter(x, y)
    axScatter.grid(b=True, which='major', color='gray', linestyle='--')
    axScatter.set_xlabel(xlab)
    axScatter.set_ylabel(ylab)

    # for plotting the best fit accuracy curve
    num_pts = 100
    order = 3
    coeffs_x = np.polyfit(x2, acc_x, order)
    x3 = np.arange(num_pts + 1) * (np.max(x2) -
                                   np.min(x2)) / num_pts + np.min(x2)
    fit_x = np.polyval(coeffs_x, x3)

    coeffs_y = np.polyfit(y2, acc_y, order)
    y3 = np.arange(num_pts + 1) * (np.max(y2) -
                                   np.min(y2)) / num_pts + np.min(y2)
    fit_y = np.polyval(coeffs_y, y3)

    # plot the curve and place dots on the curve
    axLinex.plot(x3, fit_x)
    axLinex.scatter(x2, acc_x)
    axLinex.grid(b=True, which='major', color='gray', linestyle='--')
    axLinex.set_title(title1)
    axLiney.plot(fit_y, y3)
    axLiney.scatter(acc_y, y2)
    axLiney.grid(b=True, which='major', color='gray', linestyle='--')
    axLiney.set_title(title2)

    plt.show()
def draw_bace_example_graph():
    # active/inactive example
    for i in range(8, 11):
        results = []
        with open(
                "../../experiment/figure/rotation_single_bace_{}_x.csv".format(
                    i)) as file:
            reader = csv.reader(file)
            for row in reader:
                result = [float(r) for r in row
                          ]  # ex [0, 45, 90, 135, 180, 225, 270, 315]
                results.append([
                    *result[len(result) // 2:], *result[:len(result) // 2 + 1]
                ])

        active_results = results[:len(results) // 2]
        inactive_results = results[len(results) // 2:]

        print(active_results)

        results = []
        with open("../../experiment/figure/rotation_single_bacer_{}_x.csv".
                  format(i)) as file:
            reader = csv.reader(file)
            for row in reader:
                result = [float(r) for r in row
                          ]  # ex [0, 45, 90, 135, 180, 225, 270, 315]
                results.append([
                    *result[len(result) // 2:], *result[:len(result) // 2 + 1]
                ])

        active_results2 = results[:len(results) // 2]
        inactive_results2 = results[len(results) // 2:]

        print(active_results2)

        major_tick = MultipleLocator(9)
        major_formatter = FixedFormatter([
            "", "-180", "-135", "-90", "-45", "0", "+45", "+90", "+135", "+180"
        ])
        minor_tick = MultipleLocator(9)

        x = np.arange(len(active_results[0]))

        for j in range(len(active_results)):
            # plt.figure(figsize=(8, 2.5))
            plt.figure(figsize=(17, 2.5))
            ax = plt.subplot(1, 1, 1)
            ax.spines['right'].set_visible(False)
            ax.spines['top'].set_visible(False)

            # Active
            plt.plot(x,
                     active_results[j],
                     color="#000000",
                     linewidth=2,
                     linestyle="solid")
            plt.plot(x,
                     active_results2[j],
                     color="#000000",
                     linewidth=2,
                     linestyle="dashed")

            # Left ticks
            ax.xaxis.set_major_locator(major_tick)
            ax.xaxis.set_major_formatter(major_formatter)
            ax.xaxis.set_minor_locator(minor_tick)
            ax.xaxis.set_minor_formatter(NullFormatter())
            plt.ylim(0, 1)
            plt.yticks(np.arange(0, 1.01, 0.5), ("0.0", "0.5", "1.0"))

            fig_name = "../../experiment/figure/ex/rotation_single_trial{}_a{}_x.png".format(
                i, j)
            plt.savefig(fig_name, dpi=600)
            plt.clf()
            print("Saved figure on {}".format(fig_name))

            # plt.figure(figsize=(8, 2.5))
            plt.figure(figsize=(17, 2.5))
            ax = plt.subplot(1, 1, 1)
            ax.spines['right'].set_visible(False)
            ax.spines['top'].set_visible(False)

            # Inactive
            plt.plot(x,
                     inactive_results[j],
                     color="#000000",
                     linewidth=2,
                     linestyle="solid")
            plt.plot(x,
                     inactive_results2[j],
                     color="#000000",
                     linewidth=2,
                     linestyle="dashed")

            # Left ticks
            ax.xaxis.set_major_locator(major_tick)
            ax.xaxis.set_major_formatter(major_formatter)
            ax.xaxis.set_minor_locator(minor_tick)
            ax.xaxis.set_minor_formatter(NullFormatter())
            plt.ylim(0, 1)
            plt.yticks(np.arange(0, 1.01, 0.5), ("0.0", "0.5", "1.0"))

            fig_name = "../../experiment/figure/ex/rotation_single_trial{}_i{}_x.png".format(
                i, j)
            plt.savefig(fig_name, dpi=600)
            plt.clf()
            print("Saved figure on {}".format(fig_name))
Esempio n. 9
0
    def test_plot_compare_methods(self):
        """

    """
        if 'CUDA_VISIBLE_DEVICES' not in os.environ:
            os.environ['CUDA_VISIBLE_DEVICES'] = '0'
        if 'PORT' not in os.environ:
            os.environ['PORT'] = '6006'
        if 'TIME_STR' not in os.environ:
            os.environ['TIME_STR'] = '0' if utils.is_debugging() else '1'
        # func name
        assert sys._getframe().f_code.co_name.startswith('test_')
        command = sys._getframe().f_code.co_name[5:]
        class_name = self.__class__.__name__[7:] \
          if self.__class__.__name__.startswith('Testing') \
          else self.__class__.__name__
        outdir = f'results/{class_name}/{command}'

        from datetime import datetime
        TIME_STR = bool(int(os.getenv('TIME_STR', 0)))
        time_str = datetime.now().strftime("%Y%m%d-%H_%M_%S_%f")[:-3]
        outdir = outdir if not TIME_STR else (outdir + '_' + time_str)
        print(outdir)

        import collections, shutil
        shutil.rmtree(outdir, ignore_errors=True)
        os.makedirs(outdir, exist_ok=True)

        from collections import OrderedDict
        from functools import partial
        from time import time

        import matplotlib.pyplot as plt
        from mpl_toolkits.mplot3d import Axes3D
        from matplotlib.ticker import NullFormatter

        from sklearn import manifold, datasets

        # Next line to silence pyflakes. This import is needed.
        Axes3D

        n_points = 1000
        X, color = datasets.make_s_curve(n_points, random_state=0)
        n_neighbors = 10
        n_components = 2

        # Create figure
        fig = plt.figure(figsize=(15, 8))
        fig.suptitle("Manifold Learning with %i points, %i neighbors" %
                     (1000, n_neighbors),
                     fontsize=14)

        # Add 3d scatter plot
        ax = fig.add_subplot(251, projection='3d')
        ax.scatter(X[:, 0], X[:, 1], X[:, 2], c=color, cmap=plt.cm.Spectral)
        ax.view_init(4, -72)

        # Set-up manifold methods
        LLE = partial(manifold.LocallyLinearEmbedding,
                      n_neighbors,
                      n_components,
                      eigen_solver='auto')

        methods = OrderedDict()
        methods['LLE'] = LLE(method='standard')
        methods['LTSA'] = LLE(method='ltsa')
        methods['Hessian LLE'] = LLE(method='hessian')
        methods['Modified LLE'] = LLE(method='modified')
        methods['Isomap'] = manifold.Isomap(n_neighbors, n_components)
        methods['MDS'] = manifold.MDS(n_components, max_iter=100, n_init=1)
        methods['SE'] = manifold.SpectralEmbedding(n_components=n_components,
                                                   n_neighbors=n_neighbors)
        methods['t-SNE'] = manifold.TSNE(n_components=n_components,
                                         init='pca',
                                         random_state=0)

        # Plot results
        for i, (label, method) in enumerate(methods.items()):
            t0 = time()
            Y = method.fit_transform(X)
            t1 = time()
            print("%s: %.2g sec" % (label, t1 - t0))
            ax = fig.add_subplot(2, 5, 2 + i + (i > 3))
            ax.scatter(Y[:, 0], Y[:, 1], c=color, cmap=plt.cm.Spectral)
            ax.set_title("%s (%.2g sec)" % (label, t1 - t0))
            ax.xaxis.set_major_formatter(NullFormatter())
            ax.yaxis.set_major_formatter(NullFormatter())
            ax.axis('tight')

        plt.show()
        pass
Esempio n. 10
0
def draw_single_cluster_plot(plotFilePath, dots):
    #    print "# creating data from dots"
    X = []
    Y = []
    for x, y in dots:
        X.append(float(x))
        Y.append(float(y))

    nullfmt = NullFormatter()  # no labels

    #    print "# definitions for the axes"
    left, width = 0.1, 0.65
    bottom, height = 0.1, 0.65
    bottom_h = left_h = left + width + 0.02

    rect_scatter = [left, bottom, width, height]
    rect_histx = [left, bottom_h, width, 0.2]
    rect_histy = [left_h, bottom, 0.2, height]

    #    print "start with a rectangular Figure"
    plt.figure(1, figsize=(8, 8))

    axScatter = plt.axes(rect_scatter)
    axHistx = plt.axes(rect_histx)
    axHisty = plt.axes(rect_histy)

    #    print "# no labels"
    axHistx.xaxis.set_major_formatter(nullfmt)
    axHisty.yaxis.set_major_formatter(nullfmt)

    #    print "# the scatter plot:"
    #    axScatter.scatter(X, Y)

    axScatter.plot(X, Y, '.')

    #    print "# now determine nice limits by hand:"
    #    binwidth = 0.25
    #    nbBins = 60
    #    print " -1"
    #    xymax = np.max( [np.max(np.fabs(X)), np.max(np.fabs(Y))] )
    #    xymin = np.min( [np.min(np.fabs(X)), np.min(np.fabs(Y))] )
    xmax = np.max(X)
    ymax = np.max(Y)
    xmin = np.min(X)
    ymin = np.min(Y)
    #    taille fixe sur les histo
    #    xmin=0;xmax=score_max
    #    ymin=0;ymax=rmsd_max

    #    print xymax,xymin
    #    print " -2"
    #    lim = ( int(xymax/binwidth) + 1) * binwidth
    #    print " -3"
    #    axScatter.set_xlim( (-lim, lim) )
    #    axScatter.set_ylim( (-lim, lim) )
    axScatter.set_xlim((xmin * .9, xmax * 1.1))
    axScatter.set_ylim((ymin * .9, ymax * 1.1))
    #    print " -4"
    #    bins = np.arange(-lim, lim + binwidth, binwidth)
    binwidth = (xmax * 1.1 - xmin * .9) / nbBins
    xBins = np.arange(xmin * .9, xmax * 1.1 + binwidth, binwidth)
    binwidth = (ymax * 1.1 - ymin * .9) / nbBins
    yBins = np.arange(ymin * .9, ymax * 1.1 + binwidth, binwidth)
    #    print " -5"
    axHistx.hist(X, bins=xBins)
    #    print " -6"
    axHisty.hist(Y, bins=yBins, orientation='horizontal')

    #    print "making histograms"
    axHistx.set_xlim(axScatter.get_xlim())
    axHisty.set_ylim(axScatter.get_ylim())

    print "# save plot"
    plt.savefig(plotFilePath)
    plt.clf()
Esempio n. 11
0
def draw_example_graph(dataset, trial_path):
    results = []
    with open(trial_path + "/rotation_single_x.csv") as file:
        reader = csv.reader(file)
        for row in reader:
            result = [float(r)
                      for r in row]  # ex [0, 45, 90, 135, 180, 225, 270, 315]
            results.append(
                [*result[len(result) // 2:], *result[:len(result) // 2 + 1]])

    major_tick = MultipleLocator(18)
    major_formatter = FixedFormatter(["", "-180", "-90", "0", "+90", "+180"])
    minor_tick = MultipleLocator(9)

    x = np.arange(len(results[0]))

    # Draw figure
    for j in range(0, min(len(results), 5)):
        if "bace" in trial_path or "hiv" in trial_path:
            plt.figure(figsize=(8, 2.5))
            ax = plt.subplot(1, 1, 1)
            ax.spines['right'].set_visible(False)
            ax.spines['top'].set_visible(False)

            plt.plot(x, results[j], color="#000000", linewidth=2)

            # Left ticks
            ax.xaxis.set_major_locator(major_tick)
            ax.xaxis.set_major_formatter(major_formatter)
            ax.xaxis.set_minor_locator(minor_tick)
            ax.xaxis.set_minor_formatter(NullFormatter())
            plt.ylim(0, 1)
            plt.yticks(np.arange(0, 1.01, 0.5), ("0.0", "0.5", "1.0"))

            fig_name = "../../experiment/figure/ex/rotation_single_{}_{}_x.png".format(
                dataset, j)
            plt.savefig(fig_name, dpi=600)
            plt.clf()
            print("Saved figure on {}".format(fig_name))

        else:
            # Figure
            plt.figure(figsize=(8, 2.5))
            ax = plt.subplot(1, 1, 1)
            ax.spines['right'].set_visible(False)
            ax.spines['top'].set_visible(False)

            y = results[j]
            mean_y = np.average(y)
            ylim = (mean_y - 1.5, mean_y + 1.5)
            plt.plot(x, y, color="#000000", linewidth=2)

            # Ticks
            ax.xaxis.set_major_locator(major_tick)
            ax.xaxis.set_major_formatter(major_formatter)
            ax.xaxis.set_minor_locator(minor_tick)
            ax.xaxis.set_minor_formatter(NullFormatter())
            plt.ylim(ylim)

            fig_name = "../../experiment/figure/ex/rotation_single_{}_{}_x.png".format(
                dataset, j)
            plt.savefig(fig_name, dpi=600)
            plt.clf()
            print("Saved figure on {}".format(fig_name))
Esempio n. 12
0
def plot_pair(
    ax,
    infdata_group,
    numvars,
    figsize,
    textsize,
    kind,
    scatter_kwargs,
    kde_kwargs,
    hexbin_kwargs,
    gridsize,
    colorbar,
    divergences,
    diverging_mask,
    divergences_kwargs,
    flat_var_names,
    backend_kwargs,
    marginal_kwargs,
    show,
    marginals,
    point_estimate,
    point_estimate_kwargs,
    point_estimate_marker_kwargs,
    reference_values,
    reference_values_kwargs,
):
    """Matplotlib pairplot."""
    if backend_kwargs is None:
        backend_kwargs = {}

    backend_kwargs = {
        **backend_kwarg_defaults(),
        **backend_kwargs,
    }
    backend_kwargs.pop("constrained_layout")

    scatter_kwargs = matplotlib_kwarg_dealiaser(scatter_kwargs, "scatter")

    scatter_kwargs.setdefault("marker", ".")
    scatter_kwargs.setdefault("lw", 0)
    # Sets the default zorder higher than zorder of grid, which is 0.5
    scatter_kwargs.setdefault("zorder", 0.6)

    if kde_kwargs is None:
        kde_kwargs = {}

    if hexbin_kwargs is None:
        hexbin_kwargs = {}
    hexbin_kwargs.setdefault("mincnt", 1)

    divergences_kwargs = matplotlib_kwarg_dealiaser(divergences_kwargs, "plot")
    divergences_kwargs.setdefault("marker", "o")
    divergences_kwargs.setdefault("markeredgecolor", "k")
    divergences_kwargs.setdefault("color", "C1")
    divergences_kwargs.setdefault("lw", 0)

    if marginal_kwargs is None:
        marginal_kwargs = {}

    point_estimate_kwargs = matplotlib_kwarg_dealiaser(point_estimate_kwargs, "fill_between")

    if kind != "kde":
        kde_kwargs.setdefault("contourf_kwargs", {})
        kde_kwargs["contourf_kwargs"].setdefault("alpha", 0)
        kde_kwargs.setdefault("contour_kwargs", {})
        kde_kwargs["contour_kwargs"].setdefault("colors", "k")

    if reference_values:
        reference_values_copy = {}
        label = []
        for variable in list(reference_values.keys()):
            if " " in variable:
                variable_copy = variable.replace(" ", "\n", 1)
            else:
                variable_copy = variable

            label.append(variable_copy)
            reference_values_copy[variable_copy] = reference_values[variable]

        difference = set(flat_var_names).difference(set(label))

        if difference:
            warn = [diff.replace("\n", " ", 1) for diff in difference]
            warnings.warn(
                "Argument reference_values does not include reference value for: {}".format(
                    ", ".join(warn)
                ),
                UserWarning,
            )

    reference_values_kwargs = matplotlib_kwarg_dealiaser(reference_values_kwargs, "plot")

    reference_values_kwargs.setdefault("color", "C3")
    reference_values_kwargs.setdefault("marker", "o")

    point_estimate_marker_kwargs = matplotlib_kwarg_dealiaser(
        point_estimate_marker_kwargs, "scatter"
    )
    point_estimate_marker_kwargs.setdefault("marker", "s")
    point_estimate_marker_kwargs.setdefault("color", "C1")

    # pylint: disable=too-many-nested-blocks
    if numvars == 2:
        (figsize, ax_labelsize, _, xt_labelsize, linewidth, markersize) = _scale_fig_size(
            figsize, textsize, numvars - 1, numvars - 1
        )
        backend_kwargs.setdefault("figsize", figsize)

        marginal_kwargs.setdefault("plot_kwargs", {})
        marginal_kwargs["plot_kwargs"].setdefault("linewidth", linewidth)

        point_estimate_marker_kwargs.setdefault("s", markersize + 50)

        # Flatten data
        x = infdata_group[0].flatten()
        y = infdata_group[1].flatten()
        if ax is None:
            if marginals:
                # Instantiate figure and grid
                widths = [2, 2, 2, 1]
                heights = [1.4, 2, 2, 2]
                fig = plt.figure(**backend_kwargs)
                grid = plt.GridSpec(
                    4,
                    4,
                    hspace=0.1,
                    wspace=0.1,
                    figure=fig,
                    width_ratios=widths,
                    height_ratios=heights,
                )
                # Set up main plot
                ax = fig.add_subplot(grid[1:, :-1])
                # Set up top KDE
                ax_hist_x = fig.add_subplot(grid[0, :-1], sharex=ax)
                ax_hist_x.set_yticks([])
                # Set up right KDE
                ax_hist_y = fig.add_subplot(grid[1:, -1], sharey=ax)
                ax_hist_y.set_xticks([])
                ax_return = np.array([[ax_hist_x, None], [ax, ax_hist_y]])

                for val, ax_, rotate in ((x, ax_hist_x, False), (y, ax_hist_y, True)):
                    plot_dist(val, textsize=xt_labelsize, rotated=rotate, ax=ax_, **marginal_kwargs)

                # Personalize axes
                ax_hist_x.tick_params(labelleft=False, labelbottom=False)
                ax_hist_y.tick_params(labelleft=False, labelbottom=False)
            else:
                fig, ax = plt.subplots(numvars - 1, numvars - 1, **backend_kwargs)
        else:
            if marginals:
                assert ax.shape == (numvars, numvars)
                if ax[0, 1] is not None and ax[0, 1].get_figure() is not None:
                    ax[0, 1].remove()
                ax_return = ax
                ax_hist_x = ax[0, 0]
                ax_hist_y = ax[1, 1]
                ax = ax[1, 0]
                for val, ax_, rotate in ((x, ax_hist_x, False), (y, ax_hist_y, True)):
                    plot_dist(val, textsize=xt_labelsize, rotated=rotate, ax=ax_, **marginal_kwargs)
            else:
                ax = np.atleast_2d(ax)[0, 0]

        if "scatter" in kind:
            ax.plot(infdata_group[0], infdata_group[1], **scatter_kwargs)
        if "kde" in kind:
            plot_kde(infdata_group[0], infdata_group[1], ax=ax, **kde_kwargs)
        if "hexbin" in kind:
            hexbin = ax.hexbin(
                infdata_group[0],
                infdata_group[1],
                gridsize=gridsize,
                **hexbin_kwargs,
            )
            ax.grid(False)

        if kind == "hexbin" and colorbar:
            cbar = ax.figure.colorbar(hexbin, ticks=[hexbin.norm.vmin, hexbin.norm.vmax], ax=ax)
            cbar.ax.set_yticklabels(["low", "high"], fontsize=ax_labelsize)

        if divergences:
            ax.plot(
                infdata_group[0][diverging_mask],
                infdata_group[1][diverging_mask],
                **divergences_kwargs,
            )

        if point_estimate:
            pe_x = calculate_point_estimate(point_estimate, x)
            pe_y = calculate_point_estimate(point_estimate, y)
            if marginals:
                ax_hist_x.axvline(pe_x, **point_estimate_kwargs)
                ax_hist_y.axhline(pe_y, **point_estimate_kwargs)

            ax.axvline(pe_x, **point_estimate_kwargs)
            ax.axhline(pe_y, **point_estimate_kwargs)

            ax.scatter(pe_x, pe_y, **point_estimate_marker_kwargs)

        if reference_values:
            ax.plot(
                reference_values_copy[flat_var_names[0]],
                reference_values_copy[flat_var_names[1]],
                **reference_values_kwargs,
            )
        ax.set_xlabel("{}".format(flat_var_names[0]), fontsize=ax_labelsize, wrap=True)
        ax.set_ylabel("{}".format(flat_var_names[1]), fontsize=ax_labelsize, wrap=True)
        ax.tick_params(labelsize=xt_labelsize)

    else:
        not_marginals = int(not marginals)
        num_subplot_cols = numvars - not_marginals
        max_plots = (
            num_subplot_cols ** 2
            if rcParams["plot.max_subplots"] is None
            else rcParams["plot.max_subplots"]
        )
        cols_to_plot = np.sum(np.arange(1, num_subplot_cols + 1).cumsum() <= max_plots)
        if cols_to_plot < num_subplot_cols:
            vars_to_plot = cols_to_plot
            warnings.warn(
                "rcParams['plot.max_subplots'] ({max_plots}) is smaller than the number "
                "of resulting pair plots with these variables, generating only a "
                "{side}x{side} grid".format(max_plots=max_plots, side=vars_to_plot),
                UserWarning,
            )
        else:
            vars_to_plot = numvars - not_marginals

        (figsize, ax_labelsize, _, xt_labelsize, _, markersize) = _scale_fig_size(
            figsize, textsize, vars_to_plot, vars_to_plot
        )
        backend_kwargs.setdefault("figsize", figsize)
        point_estimate_marker_kwargs.setdefault("s", markersize + 50)

        if ax is None:
            fig, ax = plt.subplots(
                vars_to_plot,
                vars_to_plot,
                **backend_kwargs,
            )
        hexbin_values = []
        for i in range(0, vars_to_plot):
            var1 = infdata_group[i]

            for j in range(0, vars_to_plot):
                var2 = infdata_group[j + not_marginals]
                if i > j:
                    if ax[j, i].get_figure() is not None:
                        ax[j, i].remove()
                    continue

                elif i == j and marginals:
                    loc = "right"
                    plot_dist(var1, ax=ax[i, j], **marginal_kwargs)

                else:
                    if i == j:
                        loc = "left"

                    if "scatter" in kind:
                        ax[j, i].plot(var1, var2, **scatter_kwargs)

                    if "kde" in kind:

                        plot_kde(
                            var1,
                            var2,
                            ax=ax[j, i],
                            **kde_kwargs,
                        )

                    if "hexbin" in kind:
                        ax[j, i].grid(False)
                        hexbin = ax[j, i].hexbin(var1, var2, gridsize=gridsize, **hexbin_kwargs)

                    if divergences:
                        ax[j, i].plot(
                            var1[diverging_mask], var2[diverging_mask], **divergences_kwargs
                        )

                    if kind == "hexbin" and colorbar:
                        hexbin_values.append(hexbin.norm.vmin)
                        hexbin_values.append(hexbin.norm.vmax)
                        divider = make_axes_locatable(ax[-1, -1])
                        cax = divider.append_axes(loc, size="7%", pad="5%")
                        cbar = fig.colorbar(
                            hexbin, ticks=[hexbin.norm.vmin, hexbin.norm.vmax], cax=cax
                        )
                        cbar.ax.set_yticklabels(["low", "high"], fontsize=ax_labelsize)

                    if point_estimate:
                        pe_x = calculate_point_estimate(point_estimate, var1)
                        pe_y = calculate_point_estimate(point_estimate, var2)
                        ax[j, i].axvline(pe_x, **point_estimate_kwargs)
                        ax[j, i].axhline(pe_y, **point_estimate_kwargs)

                        if marginals:
                            ax[j - 1, i].axvline(pe_x, **point_estimate_kwargs)
                            pe_last = calculate_point_estimate(point_estimate, infdata_group[-1])
                            ax[-1, -1].axvline(pe_last, **point_estimate_kwargs)

                        ax[j, i].scatter(pe_x, pe_y, **point_estimate_marker_kwargs)

                    if reference_values:
                        x_name = flat_var_names[i]
                        y_name = flat_var_names[j + not_marginals]
                        if x_name and y_name not in difference:
                            ax[j, i].plot(
                                reference_values_copy[x_name],
                                reference_values_copy[y_name],
                                **reference_values_kwargs,
                            )

                if j != vars_to_plot - 1:
                    ax[j, i].axes.get_xaxis().set_major_formatter(NullFormatter())
                else:
                    ax[j, i].set_xlabel(
                        "{}".format(flat_var_names[i]), fontsize=ax_labelsize, wrap=True
                    )
                if i != 0:
                    ax[j, i].axes.get_yaxis().set_major_formatter(NullFormatter())
                else:
                    ax[j, i].set_ylabel(
                        "{}".format(flat_var_names[j + not_marginals]),
                        fontsize=ax_labelsize,
                        wrap=True,
                    )
                ax[j, i].tick_params(labelsize=xt_labelsize)

    if backend_show(show):
        plt.show()

    if marginals and numvars == 2:
        return ax_return
    return ax
Esempio n. 13
0
def doWork(args):
    """ Main wrapper"""

    sorted_dates = sorted(viral_samples.values())
    # open a file of contig stats and get the contig lengths, rel abundance
    contig_stats = defaultdict(dict)
    with open(args.contigs) as fp:
        callback = None
        if args.filter is not None:
            callback = fx_include

        for name, seq, qual in fx_parse(fp,
                                        callback=callback,
                                        headers=args.filter):
            contig_stats[name]['length'] = len(seq)
            contig_stats[name]['spacers'] = []
            contig_stats[name]['snps'] = []
            contig_stats[name]['rel_abs'] = []

    # open the vcf file containing SNPs get the timepoints that the SNP is
    # present
    vcf_reader = vcf.Reader(open(args.snps))
    for record in vcf_reader:
        if record.QUAL is not None and int(record.QUAL) < int(
                args.snp_quality):
            continue
        if record.CHROM not in contig_stats:
            continue
        for sample in record.samples:
            if sample['GT'] != '0/0' and sample['GT'] != './.':
                try:
                    contig_stats[record.CHROM]['snps'].append([
                        record.POS,
                        viral_samples[os.path.splitext(sample.sample)[0]]
                    ])
                except:
                    contig_stats[record.CHROM]['snps'] = []
                    contig_stats[record.CHROM]['snps'].append([
                        record.POS,
                        viral_samples[os.path.splitext(sample.sample)[0]]
                    ])

    # open the Spacer file get the positions and timepoints
    with open(args.spacers) as sp:
        for line in sp:
            line = line.rstrip()
            fields = line.split('\t')
            if fields[0].startswith('M8') or fields[1] not in contig_stats:
                continue
            ret = get_spacer_positions(fields)
            try:
                contig_stats[fields[1]]['spacers'].append(
                    [ret.start, ret.timepoint])
            except:
                contig_stats[fields[1]]['spacers'] = []
                contig_stats[fields[1]]['spacers'].append(
                    [ret.start, ret.timepoint])

    # open relative abundance file and add that data in
    with open(args.rel_abs) as ra:
        rel_abs_header = True
        header = []
        times = []
        for line in ra:
            line = line.rstrip()
            fields = line.split('\t')
            if rel_abs_header:
                times = [viral_samples[x] for x in fields[1:]]
                rel_abs_header = False
            elif fields[0] in contig_stats:
                contig_stats[fields[0]]['rel_abs'] = zip(fields[1:], times)

    #-----
    # make a 2d plot
    nullfmt = NullFormatter()
    for contig_name, data in contig_stats.items():

        # definitions for the axes
        left, width = 0.1, 0.65
        bottom, height = 0.1, 0.65
        left_h = left + width + 0.02

        rect_scatter = [left, bottom, width, height]
        rect_histy = [left_h, bottom, 0.2, height]

        fig = plt.figure()
        axScatter = fig.add_axes(rect_scatter)
        axHisty = fig.add_axes(rect_histy)
        #axScatter = plt.axes(rect_scatter)
        #axHisty = plt.axes(rect_histy)
        axHisty.set_xlabel('relative abundance')
        axHisty.yaxis.set_major_formatter(nullfmt)

        axHisty.set_ylim((mpl.dates.date2num(sorted_dates[0]),
                          mpl.dates.date2num(sorted_dates[-1])))
        axHisty.xaxis.set_major_locator(MaxNLocator(4))

        #phi_rel_abundance = np.random.randn(len(sorted_dates))
        #ra_point = [x[0] for x in data['rel_abs']]
        ra_time = [x[1] for x in data['rel_abs']]
        ra_time = mpl.dates.date2num(ra_time)  # sorted(ra_time)
        sorted_indexes = np.argsort(ra_time)
        ra_point = []
        for i in sorted_indexes:
            ra_point.append(data['rel_abs'][i][0])
        axHisty.plot_date(ra_point,
                          sorted(ra_time),
                          xdate=False,
                          ydate=True,
                          color='0.7',
                          marker=' ',
                          linestyle='--')

        #ax.xaxis.set_ticks_position('top')
        axScatter.set_xlim([0, data['length']])
        axScatter.set_ylim((mpl.dates.date2num(sorted_dates[0]),
                            mpl.dates.date2num(sorted_dates[-1])))
        axScatter.set_xlabel('genome position (bp)')
        axScatter.set_title(contig_name)

        sp_dates = [x[1] for x in data['spacers']]
        sp_dates = mpl.dates.date2num(sp_dates)
        sp_points = [x[0] for x in data['spacers']]
        axScatter.plot_date(sp_points,
                            sp_dates,
                            color='r',
                            alpha=0.5,
                            xdate=False,
                            ydate=True)

        sn_dates = [x[1] for x in data['snps']]
        sn_dates = mpl.dates.date2num(sn_dates)
        sn_points = [x[0] for x in data['snps']]
        axScatter.plot_date(sn_points,
                            sn_dates,
                            color='0.7',
                            marker='.',
                            xdate=False,
                            ydate=True)

        axScatter.tick_params(axis='y', labelsize='small')
        axHisty.tick_params(axis='y', labelsize='small')
        #
        # Change the formatting of the xlabels to make them pretty
        #
        labels = axScatter.get_xticklabels()
        for label in labels:
            label.set_rotation(30)
            label.set_horizontalalignment('right')
            label.set_size('small')

        labels = axHisty.get_xticklabels()
        for label in labels:
            label.set_rotation(30)
            label.set_horizontalalignment('right')
            label.set_size('small')

        plt.savefig(os.path.join(args.output, contig_name + ".png"),
                    dpi=300,
                    format='png')
        #-----
        # clean up!
        plt.close(fig)
        #plt.close(axHisty)
        del fig

    return 0
Esempio n. 14
0
    lr=0.00005)

n = 0
for (masked, mask), ori in tqdm(test_generator):

    # Run predictions for this batch of images
    pred_img = model.predict([masked, mask])
    pred_time = datetime.datetime.now().strftime('%Y-%m-%d-%H-%M-%S')

    # Clear current output and display test images
    for i in range(len(ori)):
        _, axes = plt.subplots(1, 2, figsize=(10, 5))
        axes[0].imshow(masked[i, :, :, :])
        axes[1].imshow(pred_img[i, :, :, :] * 1.)
        axes[0].set_title('Masked Image')
        axes[1].set_title('Predicted Image')
        axes[0].xaxis.set_major_formatter(NullFormatter())
        axes[0].yaxis.set_major_formatter(NullFormatter())
        axes[1].xaxis.set_major_formatter(NullFormatter())
        axes[1].yaxis.set_major_formatter(NullFormatter())

        plt.savefig(r'data/test_samples/img_{}_{}.png'.format(i, pred_time))
        plt.close()
        n += 1

    # Only create predictions for about 100 images
    if n > 100:
        break

print("finish")
Esempio n. 15
0
    def make_plot(self,
                  classifier,
                  show,
                  save,
                  compression_keys,
                  topk=1,
                  make_title=False,
                  xmin=0.032,
                  xmax=None,
                  ymin=0,
                  ymax=100,
                  figsize=(6, 3.75),
                  logscale=True,
                  font_name='times_roman',
                  legend_loc='lower right',
                  bpp_min=None):

        if compression_keys is None:
            raise ValueError('compression_keys must not be None')

        if not isinstance(compression_keys, list):
            compression_keys = list([compression_keys])

        if int(topk) != 1 and int(topk) != 5:
            raise ValueError('topk must either be `1` or `5`')

        topkacc_kw = LogsParser.TOP1ACC_KW if int(
            topk) == 1 else LogsParser.TOP5ACC_KW
        topkacc_idx = 1 if int(topk) == 1 else 2

        configs = {
            ckey: self.load_config(ckey, classifier)
            for ckey in compression_keys
        }
        csv_original = os.path.join(
            self._csv_dir, CSV_FILE_BASE.format('original', classifier))
        corrupted_logfiles = []

        if os.path.isfile(csv_original):
            acc_data_lossless = np.array(read_csv(csv_original),
                                         dtype=np.float32)
        else:
            print('WARNING! {} not found.'.format(csv_original))
            corrupted_logfiles.append('original')
            acc_data_lossless = None

        # ========= parse csv files
        parsed_data = {}
        for key in compression_keys:
            cfg = configs[key]
            csv_file = cfg['csv_file']

            if not os.path.isfile(csv_file):
                print('WARNING! {} not found.'.format(csv_file))
                corrupted_logfiles.append(key)
                continue

            acc_data = np.array(read_csv(csv_file), dtype=np.float32)

            # sort data
            acc_data = acc_data[acc_data[:, 0].argsort()]

            if bpp_min is not None:
                include_idx = np.where(acc_data[:, 0] >= float(bpp_min))[0]
                acc_data = acc_data[include_idx, :]

            parsed_data[key] = acc_data[:, 0], 100.0 * acc_data[:, topkacc_idx]

        if len(parsed_data) == 0:
            print('parsed_data empty')
            return

        compression_keys = list(
            [k for k in compression_keys if k not in corrupted_logfiles])
        configs = {k: configs[k] for k in compression_keys}
        compression_colors = self.keys_to_color([k for k in compression_keys])

        # ========= make plot
        # determine plot boundaries
        all_bpp_data = np.unique(
            np.concatenate([data[0] for data in parsed_data.values()]))
        if xmax is None:
            xmax = all_bpp_data.max() + 2.0
        x_lim = xmin, xmax
        y_lim = ymin, ymax

        # setup fig
        fig = plt.figure(figsize=figsize)

        # plot data
        ax = plt.gca()
        plot_func = ax.semilogx if logscale else ax.plot
        for key in compression_keys:
            bpp_array, acc_array = parsed_data[key]
            cfg = configs[key]

            plot_func(bpp_array,
                      acc_array,
                      lw=cfg['lw'],
                      color=compression_colors[key],
                      label=COMPRESSION_NAMES[key],
                      marker=cfg['marker'],
                      markersize=3 * cfg['lw'],
                      linestyle=cfg['linestyle'])

        if acc_data_lossless is not None:
            ax.axhline(100.0 * acc_data_lossless[0, topkacc_idx],
                       xmin=0,
                       xmax=24,
                       color='dimgrey',
                       lw=0.75,
                       linestyle='--')
            plot_func(acc_data_lossless[:, 0],
                      100.0 * acc_data_lossless[:, topkacc_idx],
                      marker='^',
                      markersize=6,
                      color='red')

        # format plot
        plt.xlim(x_lim)
        plt.ylim(y_lim)
        ax.set_xlabel('bpp',
                      fontproperties=get_font(font_name, FONTSIZES.Large))
        ax.set_ylabel('Validation Accuracy (%)',
                      fontproperties=get_font(font_name, FONTSIZES.Large))
        ax.grid(True, color=(0.91, 0.91, 0.91), linewidth=0.5)

        ax.yaxis.set_minor_locator(MultipleLocator(5))
        ax.yaxis.set_major_locator(MultipleLocator(10))
        ax.yaxis.set_major_formatter(FormatStrFormatter('%.1d'))

        if logscale:
            ax.xaxis.set_minor_locator(
                LogLocator(base=2, subs=(1.2, 1.4, 1.6, 1.8)))
            ax.xaxis.set_minor_formatter(NullFormatter())
            ax.xaxis.set_major_locator(LogLocator(base=2))
            ax.xaxis.set_major_formatter(FormatStrFormatter('%.3f'))
        else:
            ax.xaxis.set_major_locator(MultipleLocator(0.125))
            ax.xaxis.set_major_formatter(FormatStrFormatter('%.3f'))
            ax.xaxis.set_minor_locator(MultipleLocator(0.125))

        ax.tick_params(which='minor', width=0.4)

        ax.set_facecolor(FACECOLOR)
        for label in ax.get_xticklabels():
            label.set_fontproperties(get_font(font_name, FONTSIZES.large))
        for label in ax.get_yticklabels():
            label.set_fontproperties(get_font(font_name, FONTSIZES.large))
        for spine in ['top', 'bottom', 'left', 'right']:
            ax.spines[spine].set_color('black')

        # legend
        legend_labels = [COMPRESSION_NAMES[k] for k in compression_keys]
        legend_labels += ['Original']
        legend = plt.legend(
            **self._get_legend_kwargs(configs=[(k, configs[k])
                                               for k in compression_keys],
                                      labels=legend_labels,
                                      legend_loc=legend_loc,
                                      font_name=font_name,
                                      compression_colors=compression_colors))
        ax.add_artist(legend)

        # title
        if make_title:
            plt.suptitle(t='Validation Accuracy on {}, Top-{}, %'.format(
                DATASET_NAMES[self._dataset],
                1 if topkacc_kw == LogsParser.TOP1ACC_KW else 5),
                         fontproperties=get_font(font_name, FONTSIZES.Large))
            plt.title(CLASSIFIER_NAMES[classifier],
                      fontproperties=get_font(font_name, FONTSIZES.large))
            plt.subplots_adjust(left=0.08, right=0.97, bottom=0.12, top=0.86)

        else:
            fig.tight_layout()

        if show:
            plt.show()

        if save:
            if not os.path.exists(self._plots_save_dir):
                os.makedirs(self._plots_save_dir)

            save_as = '{}_accuracy_{}_{}.png'.format(self._dataset, classifier,
                                                     topkacc_kw)
            fig.savefig(os.path.join(self._plots_save_dir, save_as), dpi=200)
            print('plot saved as {}'.format(
                os.path.join(self._plots_save_dir, save_as)))

        plt.close(fig)
Esempio n. 16
0
    def on_draw(self, gr_xmin=None, gr_xmax=None, gr_ymin=None, gr_ymax=None, iq_begin=0):
        """Redraws the figure"""

        self.fig.clear()

        if gr_xmin==None : xmin = self.arrx[0]
        else             : xmin = gr_xmin

        if gr_xmax==None : xmax = self.arrx[-1] # Last element
        else             : xmax = gr_xmax

        if xmin==xmax : xmax=xmin+1 # protection against equal limits

        wwidth  = 0.26 
        wheight = 0.24 

        self.list_of_axgr = []

        #iq_begin = 5
        iq_list  = self.get_iq_list(iq_begin)
        #print 'iq_list:', iq_list, ' at self.iq_max =',self.arr_q.shape[0]

        for iwin, iq in enumerate(iq_list) :

            iwin_row = int(iwin/3)
            iwin_col = int(iwin%3)
            wx0      = 0.08 + iwin_col*0.32
            wy0      = 0.70 - iwin_row*0.3

            xarr =  self.arrx
            yarr  = self.arr_g2[:,iq]
            q_ave = self.arr_q[iq]
            q_str = 'q(%d)=%8.4f' % (iq, q_ave) 

            if gr_ymin==None : ymin = min(yarr)
            else             : ymin = gr_ymin

            if gr_ymax==None : ymax = max(yarr)
            else             : ymax = gr_ymax

            axgr = self.fig.add_axes([wx0, wy0, wwidth, wheight])
            if self.logIsOn :
                axgr.set_xscale('log')
            else :
                axgr.xaxis.set_major_locator(MaxNLocator(5))

            axgr.plot(xarr, yarr, '-bo')# '-ro'

            axgr.set_xlim(xmin,xmax) 
            axgr.set_ylim(ymin,ymax) 
            axgr.set_title(q_str, fontsize=10, color='b')
            axgr.tick_params(axis='both', which='major', labelsize=8)
            axgr.yaxis.set_major_locator(MaxNLocator(5))
            axgr.grid(self.gridIsOn)


            if iwin_col == 0 :
                axgr.set_ylabel(r'$g_{2}$', fontsize=14)
            if iwin_row == 2 :
                axgr.set_xlabel(r'$\tau$ (in number of frames)', fontsize=12)
            else :
                axgr.xaxis.set_major_formatter(NullFormatter())

            self.list_of_axgr.append(axgr)

            self.canvas.draw()
Esempio n. 17
0
def plot_pnet_vs_dense_with_ratio(ax, c, label, plot_ratio=False):
    sns.set_color_codes('muted')
    current_palette = sns.color_palette()
    color = current_palette[3]

    sizes = []
    for i in range(0, 20, 3):
        df_split = pd.read_csv(join(PROSTATE_DATA_PATH,
                                    'splits/training_set_{}.csv'.format(i)),
                               index_col=0)
        sizes.append(df_split.shape[0])
    sizes = np.array(sizes)

    df_dense_sameweights = get_dense_sameweights(c)
    df_pnet = get_pnet_preformance(col=c)
    pvalues = get_stats(df_pnet, df_dense_sameweights)
    print c, zip(pvalues, sizes)
    plot_compaison(ax, label, df_pnet, df_dense_sameweights)
    # ax.legend(ax.legend.text, loc= 'upper left')

    y1 = df_pnet.mean()
    y2 = df_dense_sameweights.mean()
    height = map(max, zip(y1, y2))
    print 'height', height
    updated_values = []
    for i, (p, s) in enumerate(zip(pvalues, sizes)):
        if p >= 0.05:
            displaystring = r'n.s.'
        elif p < 0.0001:
            displaystring = r'***'
        elif p < 0.001:
            displaystring = r'**'
        else:
            displaystring = r'*'
        updated_values.append('{:.0f}\n({})'.format(s, displaystring))
        ax.axvline(x=s, ymin=0, linestyle='--', alpha=0.3)
    ax.set_xscale("log")
    ax.set_xticks([], [])

    ax.xaxis.set_major_formatter(NullFormatter())
    ax.xaxis.set_minor_formatter(NullFormatter())
    ax.tick_params(axis=u'x', which=u'both', length=0)

    ax.set_xticks(sizes)
    ax.set_xticklabels(updated_values)
    ax.set_xlim((min(sizes) - 5, max(sizes) + 50))

    if plot_ratio:
        ax2 = ax.twinx()
        y1 = df_pnet.mean()
        y2 = df_dense_sameweights.mean()
        ratio = (y1.values - y2.values) / y2.values
        new_x = np.linspace(min(sizes), max(sizes), num=np.size(sizes))
        coefs = np.polyfit(sizes, ratio, 3)
        new_line = np.polyval(coefs, new_x)

        ax2.plot(new_x, new_line, '-.', linewidth=1, color=color)
        ax2.set_ylim((0.005, .23))
        ax.set_ylim((.5, 1.05))
        ax2.set_ylabel('Performance increase',
                       fontdict=dict(family='Arial',
                                     weight='bold',
                                     fontsize=14,
                                     color=color))
        vals = ax2.get_yticks()
        ax2.set_yticklabels(['{:,.0%}'.format(x) for x in vals])
        ax2.set_yticklabels(['{:,.0%}'.format(x) for x in vals])
        ax.set_yticks([], minor=True)
        ax2.spines['right'].set_color(color)
        ax2.yaxis.label.set_color(color)
        ax2.tick_params(axis='y', colors=color)
        ax2.spines['top'].set_visible(False)
        ax2.spines['right'].set_visible(False)
        ax2.spines['left'].set_visible(False)
        ax2.spines['bottom'].set_visible(False)

    ax.set_xlabel('Number of samples',
                  fontdict=dict(family='Arial', weight='bold', fontsize=14))
    size_vals = ax.get_xticks()
    pvalues_dict = {}
    for p, s in zip(pvalues, sizes):
        pvalues_dict[s] = p
    return pvalues_dict
Esempio n. 18
0
def main():
    import numpy as np

    #str="features_all_without_skeleton"
    str = "features_all_compress5"
    data = np.genfromtxt(str + ".csv", delimiter=",")
    #str="multipliers"
    #data=np.genfromtxt("optdigits.tes",delimiter=",")

    X = data[:, :-1]
    Y = data[:, -1]
    size = X.shape[0]

    print "++++++++++++++++++++Affinity propagation+++++++++++++"
    from sklearn.cluster import AffinityPropagation
    # Compute Affinity Propagation

    af = AffinityPropagation(preference=-50).fit(X)
    cluster_centers_indices = af.cluster_centers_indices_
    labels_af = af.labels_
    n_clusters_ = len(cluster_centers_indices)
    print "number of cluster is: ", n_clusters_
    labels_af = test_labels(labels_af, Y)
    cm = calculate_confusion(labels_af, Y)
    print " Fowlkes Mallows index index is: ", calculate_fm(cm, size)
    np.savez(str + "/af_all",
             n_cluster=n_clusters_,
             center=af.cluster_centers_,
             center_labels=labels_af[af.cluster_centers_indices_])

    # Plot result
    import numpy as np
    import matplotlib.pyplot as plt
    from matplotlib.ticker import NullFormatter
    from sklearn import manifold, datasets
    from sklearn.decomposition import PCA

    n_neighbors = 30
    n_components = 2

    fig = plt.figure(figsize=(15, 8))

    plt.suptitle("Manifold Learning with %i points, %i neighbors, t-SNE" %
                 (size, n_neighbors),
                 fontsize=14)

    color = Y

    xx = manifold.TSNE(n_components=2, init='pca',
                       random_state=0).fit_transform(X)
    ax = fig.add_subplot(121)
    plt.scatter(xx[:, 0], xx[:, 1], c=color, cmap=plt.cm.Spectral)
    plt.title("data with true label")
    ax.xaxis.set_major_formatter(NullFormatter())
    ax.yaxis.set_major_formatter(NullFormatter())
    plt.axis('tight')

    color = labels_af

    xx = manifold.TSNE(n_components=2, init='pca',
                       random_state=0).fit_transform(X)
    ax = fig.add_subplot(122)
    plt.scatter(xx[:, 0], xx[:, 1], c=color, cmap=plt.cm.Spectral)
    plt.title("data with clustering label")
    ax.xaxis.set_major_formatter(NullFormatter())
    ax.yaxis.set_major_formatter(NullFormatter())
    plt.axis('tight')

    plt.show()
Esempio n. 19
0
    def dashboard(self,
                  xname,
                  yname1,
                  yname2,
                  zname=False,
                  time_range=False,
                  fit=False,
                  unpickle=False,
                  masks=False,
                  plot=False,
                  print=False,
                  plot_anomaly=False,
                  set_outlier=False,
                  **kwargs):

        fig, axes = plt.subplots(4,
                                 3,
                                 figsize=(20, 12),
                                 gridspec_kw={
                                     'width_ratios': [2, 6, 1],
                                     'height_ratios': [1.5, 1, 1, 1]
                                 })
        fig.tight_layout()
        nullfmt = NullFormatter()  # no labels

        df = self.met_df.copy()

        if time_range is not False:
            df = df[time_range[0]:time_range[1]]

        # create masked versions of the vars
        x = ma.masked_invalid(df[xname])
        y1, y2 = ma.masked_invalid(df[yname1]), ma.masked_invalid(df[yname2])
        y = y1 / y2
        if zname is False: zname = 'temp_avg_1a'
        z = ma.masked_invalid(df[zname])
        t = ma.array(df.index)

        # get, plot, & print mask for all specified masks
        # d_masked is a dict with a count of no. of masked points
        mask, d_masked = self.process_masks(x,
                                            y1,
                                            y2,
                                            t,
                                            axes=axes,
                                            masks=('sensorBounds',
                                                   'flatlining'),
                                            plot=plot,
                                            print=print)
        # # reconstruct x, y, z, t with the returned mask
        # x, y, z, t = ma.array(x, mask=mask), ma.array(y, mask=mask), \
        #              ma.array(z, mask=mask), ma.array(t, mask=mask)

        ### PLOT 1 -- winddirection vs. windspeed ratio
        ax = axes[0, 0]
        ax.set_xlabel('Wind Direction (deg)')
        ax.set_xlim(0, 360)
        ax.xaxis.set_ticks(np.arange(0, 361, 45))
        ax.set_ylabel('Windspeed Ratio')
        ax.set_ylim(0.5, 1.5)
        zrange = [-30, 40]

        # mask out small speeds for fitting purposes
        mask_minSpeed = self.combine_masks(self.mm.mask_minSpeed(y1),
                                           self.mm.mask_minSpeed(y2))
        mask1 = self.combine_masks(mask, mask_minSpeed)

        # fit the data -- scikit learn ignores masks, so beware
        if fit in ('knn', 'k'):
            # check if n_neighbors, cv are in kwargs
            nn = kwargs['n_neighbors'] if 'n_neighbors' in kwargs else None
            cv = kwargs['cv'] if 'cv' in kwargs else None
            scoring = kwargs['scoring'] if 'scoring' in kwargs else None

            # do the fit
            x_fit, y_fit, sigma = mfit.fit_knn(
                ma.compressed(ma.array(x, mask=mask1)),
                ma.compressed(ma.array(y, mask=mask1)),
                axes=axes,
                n_neighbors=nn,
                cv=cv,
                scoring=scoring,
                unpickle=unpickle)

        elif fit in ('lowess', 'l'):
            x_fit, y_fit = mfit.fit_lowess(x, y)
        elif fit in ('savgol', 's'):
            x_fit, y_fit = x, mfit.fit_savgol(y)

        # sort the returned arrays for plotting purposes
        indx = x_fit.argsort()
        # confidence interval
        CI = 1.9600 * sigma[indx]  # 2-sigma CI
        ax.fill_between(x_fit[indx],
                        y_fit[indx] + CI,
                        y_fit[indx] - CI,
                        alpha=0.3,
                        color='darkorange',
                        edgecolor='',
                        label='95% CI')
        # plot the fit
        ax.plot(x_fit[indx], y_fit[indx], alpha=1, color='red', label=fit)
        ax.legend(bbox_to_anchor=(0.2, -0.5), loc=3, borderaxespad=0.)

        # plot the mask_minSpeed data
        ym = ma.array(y, mask=mask_minSpeed)
        ax.scatter(x[ym.mask == True],
                   y[ym.mask == True],
                   color='black',
                   marker='o',
                   s=10,
                   alpha=0.3)
        # plot the data
        ax.scatter(ma.array(x, mask=mask1),
                   ma.array(y, mask=mask1),
                   color='b',
                   marker='+',
                   s=10,
                   alpha=0.5)

        # plot the color bar
        # zname = 'Temperature (C)'
        # cbar_ax = fig.add_axes([0.02, 0.05, 0.02, 0.60])
        # cbar_ticks = np.arange(zrange[0], zrange[1]+10, 10)

        # cbar = fig.colorbar(im, cax=cbar_ax, ticks=cbar_ticks)
        # cbar.set_label('%s' %zname, rotation=270)
        #self.plot_cbar(fig, im, zrange)
        #fig.subplots_adjust(right=0.92)

        ### PLOT 2
        ax = axes[0, 1]
        # now, plot the normalized deviation -- anomaly
        ax.set_ylabel('Normalized Deviation')
        yrange = (-5, 5)
        ax.set_ylim(yrange)
        ax.set_xlim(time_range[0], time_range[1])
        ax.set_yticks(np.arange(yrange[0], yrange[1] + 0.1, 1))

        # calculate the normalized deviation -- anomaly
        norm_dev = ma.array(
            ((ma.compressed(ma.array(y, mask=mask1)) - y_fit) / sigma))

        #plot
        ax.scatter(ma.compressed(ma.array(t, mask=mask1)),
                   norm_dev,
                   marker='+',
                   s=10,
                   alpha=0.5)

        if 'outliers':
            label = 'mask_outliers'

            if set_outlier is True:
                maxPercentile = 99
                maxDev = np.percentile(np.abs(norm_dev), maxPercentile)
                print(
                    '\t\tThe 3-sigma (>%2i%%) norm deviation is: %5.2f. Set for production.'
                    % (maxPercentile, maxDev))

                ## pickle maxDev??
            else:
                # we need to decide which of the three maxDev to use.
                # The easiest would be to pickle all three and use a different maxDev for each height
                # for now, let this be the palce holder
                maxDev = 4.28

            mask4 = self.mm.mask_outliers(norm_dev, maxDev=maxDev)

            if print is True:
                d_masked['outliers'] = ma.count_masked(
                    ma.array(norm_dev, mask=mask4))
                self.print_mask_stats(d_masked, len(norm_dev))

        ### PLOT 3
        # plot the histogram on the side
        ax = axes[0, 2]
        ax.set_ylim(yrange)
        ax.set_yticks(np.arange(yrange[0], yrange[1] + 0.1, 1))
        ax.set_xlim((1, 10000))

        # now determine nice limits by hand:
        binwidth = 0.2
        bins = np.arange(yrange[0], yrange[1], binwidth)

        # only plot +/-5 for hist
        ax.hist(norm_dev[np.abs(norm_dev) < 5],
                bins=bins,
                orientation='horizontal')
        ax.set_xscale('log')

        ### PLOT 4-6 -- time series
        self.plot_ts(t,
                     x,
                     z,
                     mask,
                     'wdir_avg',
                     ax=axes[1, 1],
                     time_range=time_range)
        self.plot_ts(t,
                     y1,
                     z,
                     mask,
                     'wspd_avg',
                     ax=axes[2, 1],
                     time_range=time_range)
        self.plot_ts(t,
                     y2,
                     z,
                     mask,
                     'wspd_avg',
                     ax=axes[3, 1],
                     time_range=time_range)

        ### hide the other four panels for now
        axes[1, 0].axis('off')
        #axes[2, 0].axis('off')
        axes[3, 0].axis('off')
        axes[1, 2].axis('off')
        axes[2, 2].axis('off')
        axes[3, 2].axis('off')

        return mask
Esempio n. 20
0
def main(dictAlg,
         order=None,
         outputdir='.',
         info='default',
         dimension=None,
         parentHtmlFileName=None,
         plotType=PlotType.ALG,
         settings=genericsettings):
    """Generates a figure showing the performance of algorithms.

    From a dictionary of :py:class:`DataSetList` sorted by algorithms,
    generates the cumulative distribution function of the bootstrap
    distribution of aRT for algorithms on multiple functions for
    multiple targets altogether.

    :param dict dictAlg: dictionary of :py:class:`DataSetList` instances
                         one instance is equivalent to one algorithm,
    :param list targets: target function values
    :param list order: sorted list of keys to dictAlg for plotting order
    :param str outputdir: output directory
    :param str info: output file name suffix
    :param str parentHtmlFileName: defines the parent html page 

    """
    global x_limit  # late assignment of default, because it can be set to None in config
    global divide_by_dimension  # not fully implemented/tested yet
    if 'x_limit' not in globals() or x_limit is None:
        x_limit = x_limit_default

    tmp = pp.dictAlgByDim(dictAlg)
    algorithms_with_data = [a for a in dictAlg.keys() if dictAlg[a] != []]
    algorithms_with_data.sort()

    if len(algorithms_with_data) > 1 and len(tmp) != 1 and dimension is None:
        raise ValueError(
            'We never integrate over dimension for more than one algorithm.')
    if dimension is not None:
        if dimension not in tmp.keys():
            raise ValueError('dimension %d not in dictAlg dimensions %s' %
                             (dimension, str(tmp.keys())))
        tmp = {dimension: tmp[dimension]}
    dimList = list(tmp.keys())

    # The sort order will be defined inside this function.
    if plotType == PlotType.DIM:
        order = []

    # Collect data
    # Crafting effort correction: should we consider any?
    CrEperAlg = {}
    for alg in algorithms_with_data:
        CrE = 0.
        if 1 < 3 and dictAlg[alg][0].algId == 'GLOBAL':
            tmp = dictAlg[alg].dictByNoise()
            assert len(tmp.keys()) == 1
            if list(tmp.keys())[0] == 'noiselessall':
                CrE = 0.5117
            elif list(tmp.keys())[0] == 'nzall':
                CrE = 0.6572
        if plotType == PlotType.DIM:
            for dim in dimList:
                keyValue = '%d-D' % (dim)
                CrEperAlg[keyValue] = CrE
        elif plotType == PlotType.FUNC:
            tmp = pp.dictAlgByFun(dictAlg)
            for f, dictAlgperFunc in tmp.items():
                keyValue = 'f%d' % (f)
                CrEperAlg[keyValue] = CrE
        else:
            CrEperAlg[alg] = CrE
        if CrE != 0.0:
            print('Crafting effort for', alg, 'is', CrE)

    dictData = {}  # list of (ert per function) per algorithm
    dictMaxEvals = {}  # list of (maxevals per function) per algorithm

    # funcsolved = [set()] * len(targets) # number of functions solved per target
    xbest = []
    maxevalsbest = []
    target_values = testbedsettings.current_testbed.pprldmany_target_values

    dictDimList = pp.dictAlgByDim(dictAlg)
    dims = sorted(dictDimList)
    for i, dim in enumerate(dims):
        divisor = dim if divide_by_dimension else 1

        dictDim = dictDimList[dim]
        dictFunc = pp.dictAlgByFun(dictDim)
        for f, dictAlgperFunc in sorted(dictFunc.items()):
            # print(target_values((f, dim)))
            for j, t in enumerate(target_values((f, dim))):
                # for j, t in enumerate(testbedsettings.current_testbed.ecdf_target_values(1e2, f)):
                # funcsolved[j].add(f)

                for alg in sorted(algorithms_with_data):
                    x = [np.inf] * perfprofsamplesize
                    runlengthunsucc = []
                    try:
                        entry = dictAlgperFunc[alg][
                            0]  # one element per fun and per dim.
                        evals = entry.detEvals([t])[0]
                        assert entry.dim == dim
                        runlengthsucc = evals[np.isnan(evals) ==
                                              False] / divisor
                        runlengthunsucc = entry.maxevals[np.isnan(
                            evals)] / divisor
                        if len(runlengthsucc) > 0:
                            x = toolsstats.drawSP(
                                runlengthsucc,
                                runlengthunsucc,
                                percentiles=[50],
                                samplesize=perfprofsamplesize)[1]
                    except (KeyError, IndexError):
                        # set_trace()
                        warntxt = (
                            'Data for algorithm %s on function %d in %d-D ' %
                            (alg, f, dim) + 'are missing.\n')
                        warnings.warn(warntxt)

                    keyValue = alg
                    if plotType == PlotType.DIM:
                        keyValue = '%d-D' % (dim)
                        if keyValue not in order:
                            order.append(keyValue)
                    elif plotType == PlotType.FUNC:
                        keyValue = 'f%d' % (f)
                    dictData.setdefault(keyValue, []).extend(x)
                    dictMaxEvals.setdefault(keyValue,
                                            []).extend(runlengthunsucc)

            displaybest = plotType == PlotType.ALG
            if displaybest:
                # set_trace()
                refalgentries = bestalg.load_reference_algorithm(
                    testbedsettings.current_testbed.
                    reference_algorithm_filename)

                if not refalgentries:
                    displaybest = False
                else:
                    refalgentry = refalgentries[(dim, f)]
                    refalgevals = refalgentry.detEvals(target_values((f, dim)))
                    # print(refalgevals)
                    for j in range(len(refalgevals[0])):
                        if refalgevals[1][j]:
                            evals = refalgevals[0][j]
                            # set_trace()
                            assert dim == refalgentry.dim
                            runlengthsucc = evals[np.isnan(evals) ==
                                                  False] / divisor
                            runlengthunsucc = refalgentry.maxevals[
                                refalgevals[1][j]][np.isnan(evals)] / divisor
                            x = toolsstats.drawSP(
                                runlengthsucc,
                                runlengthunsucc,
                                percentiles=[50],
                                samplesize=perfprofsamplesize)[1]
                        else:
                            x = perfprofsamplesize * [np.inf]
                            runlengthunsucc = []
                        xbest.extend(x)
                        maxevalsbest.extend(runlengthunsucc)

    if order is None:
        order = dictData.keys()

    # Display data
    lines = []
    if displaybest:
        args = {
            'ls': '-',
            'linewidth': 6,
            'marker': 'D',
            'markersize': 11.,
            'markeredgewidth': 1.5,
            'markerfacecolor': refcolor,
            'markeredgecolor': refcolor,
            'color': refcolor,
            'label':
            testbedsettings.current_testbed.reference_algorithm_displayname,
            'zorder': -1
        }
        lines.append(
            plotdata(np.array(xbest), x_limit, maxevalsbest, CrE=0., **args))

    def algname_to_label(algname, dirname=None):
        """to be extended to become generally useful"""
        if isinstance(algname, (tuple, list)):  # not sure this is needed
            return ' '.join([str(name) for name in algname])
        return str(algname)

    plotting_style_list = ppfig.get_plotting_styles(order)
    for plotting_style in plotting_style_list:
        for i, alg in enumerate(plotting_style.algorithm_list):
            try:
                data = dictData[alg]
                maxevals = dictMaxEvals[alg]
            except KeyError:
                continue

            args = styles[i % len(styles)]
            args = args.copy()
            args['linewidth'] = 1.5
            args['markersize'] = 12.
            args['markeredgewidth'] = 1.5
            args['markerfacecolor'] = 'None'
            args['markeredgecolor'] = args['color']
            args['label'] = algname_to_label(alg)
            if plotType == PlotType.DIM:
                args['marker'] = genericsettings.dim_related_markers[i]
                args['markeredgecolor'] = genericsettings.dim_related_colors[i]
                args['color'] = genericsettings.dim_related_colors[i]

                # args['markevery'] = perfprofsamplesize # option available in latest version of matplotlib
                # elif len(show_algorithms) > 0:
                # args['color'] = 'wheat'
                # args['ls'] = '-'
                # args['zorder'] = -1
            # plotdata calls pprldistr.plotECDF which calls ppfig.plotUnifLog... which does the work

            args.update(plotting_style.pprldmany_styles)

            lines.append(
                plotdata(np.array(data),
                         x_limit,
                         maxevals,
                         CrE=CrEperAlg[alg],
                         **args))

    labels, handles = plotLegend(lines, x_limit)
    if True:  # isLateXLeg:
        if info:
            file_name = os.path.join(
                outputdir,
                '%s_%s.tex' % (genericsettings.pprldmany_file_name, info))
        else:
            file_name = os.path.join(
                outputdir, '%s.tex' % genericsettings.pprldmany_file_name)
        with open(file_name, 'w') as file_obj:
            file_obj.write(r'\providecommand{\nperfprof}{7}')
            algtocommand = {}  # latex commands
            for i, alg in enumerate(order):
                tmp = r'\alg%sperfprof' % pptex.numtotext(i)
                file_obj.write(
                    r'\providecommand{%s}{\StrLeft{%s}{\nperfprof}}' %
                    (tmp,
                     toolsdivers.str_to_latex(
                         toolsdivers.strip_pathname2(algname_to_label(alg)))))
                algtocommand[algname_to_label(alg)] = tmp
            if displaybest:
                tmp = r'\algzeroperfprof'
                refalgname = testbedsettings.current_testbed.reference_algorithm_displayname
                file_obj.write(r'\providecommand{%s}{%s}' % (tmp, refalgname))
                algtocommand[algname_to_label(refalgname)] = tmp

            commandnames = []
            for label in labels:
                commandnames.append(algtocommand[label])
            # file_obj.write(headleg)
            if len(
                    order
            ) > 28:  # latex sidepanel won't work well for more than 25 algorithms, but original labels are also clipped
                file_obj.write(
                    r'\providecommand{\perfprofsidepanel}{\mbox{%s}\vfill\mbox{%s}}'
                    % (commandnames[0], commandnames[-1]))
            else:
                fontsize_command = r'\tiny{}' if len(order) > 19 else ''
                file_obj.write(
                    r'\providecommand{\perfprofsidepanel}{{%s\mbox{%s}' %
                    (fontsize_command,
                     commandnames[0]))  # TODO: check len(labels) > 0
                for i in range(1, len(labels)):
                    file_obj.write('\n' +
                                   r'\vfill \mbox{%s}' % commandnames[i])
                file_obj.write('}}\n')
            # file_obj.write(footleg)
            if genericsettings.verbose:
                print('Wrote right-hand legend in %s' % file_name)

    if info:
        figureName = os.path.join(
            outputdir, '%s_%s' % (genericsettings.pprldmany_file_name, info))
    else:
        figureName = os.path.join(outputdir,
                                  '%s' % genericsettings.pprldmany_file_name)
    # beautify(figureName, funcsolved, x_limit*x_annote_factor, False, fileFormat=figformat)
    beautify()

    if plotType == PlotType.FUNC:
        dictFG = pp.dictAlgByFuncGroup(dictAlg)
        dictKey = list(dictFG.keys())[0]
        functionGroups = dictAlg[list(dictAlg.keys())[0]].getFuncGroups()
        text = '%s\n%s, %d-D' % (testbedsettings.current_testbed.name,
                                 functionGroups[dictKey], dimList[0])
    else:
        text = '%s %s' % (testbedsettings.current_testbed.name,
                          ppfig.consecutiveNumbers(sorted(dictFunc.keys()),
                                                   'f'))
        if not (plotType == PlotType.DIM):
            text += ', %d-D' % dimList[0]
    # add information about smallest and largest target and their number
    text += '\n'
    targetstrings = target_values.labels()
    if isinstance(target_values, pp.RunlengthBasedTargetValues):
        text += (str(len(targetstrings)) + ' targets RLs/dim: ' +
                 targetstrings[0] + '..' +
                 targetstrings[len(targetstrings) - 1] + '\n')
        text += '  from ' + testbedsettings.current_testbed.reference_algorithm_filename
    else:
        text += (str(len(targetstrings)) + ' targets: ' + targetstrings[0] +
                 '..' + targetstrings[len(targetstrings) - 1])
    # add number of instances
    text += '\n'
    num_of_instances = []
    for alg in algorithms_with_data:

        if ((alg in genericsettings.foreground_algorithm_list
             or alg[0] in genericsettings.foreground_algorithm_list[0]
             )  # case of a single algorithm only
                and len(dictAlgperFunc[alg]) > 0):
            num_of_instances.append(
                len((dictAlgperFunc[alg])[0].instancenumbers))
        else:
            warnings.warn(
                'The data for algorithm %s and function %s are missing' %
                (alg, f))
    # issue a warning if number of instances is inconsistant, but always
    # display only the present number of instances, i.e. remove copies
    if len(set(num_of_instances)) > 1:
        warnings.warn(
            'Number of instances inconsistent over all algorithms: %s instances found.'
            % str(num_of_instances))
    num_of_instances = set(num_of_instances)
    for n in num_of_instances:
        text += '%d, ' % n

    text = text.rstrip(', ')
    text += ' instances'

    plt.text(0.01,
             0.99,
             text,
             horizontalalignment="left",
             verticalalignment="top",
             transform=plt.gca().transAxes,
             fontsize=0.6 * label_fontsize)
    if len(dictFunc) == 1:
        plt.title(' '.join((str(list(dictFunc.keys())[0]),
                            testbedsettings.current_testbed.short_names[list(
                                dictFunc.keys())[0]])),
                  fontsize=title_fontsize)
    a = plt.gca()

    plt.xlim(1e-0, x_limit)
    xmaxexp = int(np.floor(np.log10(x_limit)))
    xmajorticks = [10**exponent for exponent in range(0, xmaxexp + 1, 2)]
    xminorticks = [10**exponent for exponent in range(0, xmaxexp + 1)]

    def formatlabel(val, pos):
        labeltext = '{:d}'.format(int(round(np.log10(val))))
        return labeltext

    a.xaxis.set_major_locator(FixedLocator(xmajorticks))
    a.xaxis.set_major_formatter(FuncFormatter(formatlabel))
    a.xaxis.set_minor_locator(FixedLocator(xminorticks))
    a.xaxis.set_minor_formatter(NullFormatter())

    if save_figure:
        ppfig.save_figure(
            figureName,
            dictAlg[algorithms_with_data[0]][0].algId,
            layout_rect=(0, 0, 0.735, 1),
            # Prevent clipping in matplotlib >=3:
            # Relative additional space numbers are
            # bottom, left, 1 - top, and 1 - right.
            # bottom=0.13 still clips g in the log(#evals) xlabel
            subplots_adjust=dict(bottom=0.135, right=0.735),
        )
        if plotType == PlotType.DIM:
            file_name = genericsettings.pprldmany_file_name
            ppfig.save_single_functions_html(
                os.path.join(outputdir, file_name),
                '',  # algorithms names are clearly visible in the figure
                htmlPage=ppfig.HtmlPage.NON_SPECIFIED,
                parentFileName='../%s' %
                parentHtmlFileName if parentHtmlFileName else None,
                header=ppfig.pprldmany_per_func_dim_header)

    if close_figure:
        plt.close()
Esempio n. 21
0
    fig = plt.figure(figsize=(6.5875, 6.2125))
    ax = fig.add_subplot(111, projection='skewx')

    plt.grid(True)

    # Plot the data using normal plotting functions, in this case using
    # log scaling in Y, as dictated by the typical meteorological plot
    ax.semilogy(T, p, color='C3')
    ax.semilogy(Td, p, color='C2')

    # An example of a slanted line at constant X
    l = ax.axvline(0, color='C0')

    # Disables the log-formatting that comes with semilogy
    ax.yaxis.set_major_formatter(ScalarFormatter())
    ax.yaxis.set_minor_formatter(NullFormatter())
    ax.set_yticks(np.linspace(100, 1000, 10))
    ax.set_ylim(1050, 100)

    ax.xaxis.set_major_locator(MultipleLocator(10))
    ax.set_xlim(-50, 50)

    plt.show()


#############################################################################
#
# ------------
#
# References
# """"""""""
Esempio n. 22
0
def plotacf(args, archive, pulsar, mjd, minFreq, maxFreq, length, extrapolx_f,
            extrapoly_f, fitxplot_f, extrapolx_t, extrapoly_t, fitxplot_t,
            midACF_freq, midACF_time, acf_mid, opt_f, opt_t, acffit_2D, f_end,
            t_end, mhzperbin, minperbin, Drift_rate, slope_visibility):

    nullfmt = NullFormatter()  # no labels
    # definitions for the axes
    left_edge = 0.15
    bottom_edge = 0.13
    width = 0.5
    height = 0.75
    space = 0.005

    rect_acf = [left_edge, bottom_edge, width, height - 0.21]
    rect_time = [left_edge, height - 0.07, width, 0.26]
    rect_freq = [
        left_edge + width + space + 0.01, bottom_edge, 0.26, height - 0.21
    ]

    plt.figure(1, figsize=(7, 6))

    axacf = plt.axes(rect_acf)
    axtime = plt.axes(rect_time)
    axfreq = plt.axes(rect_freq)

    axacf.set_ylabel("frequency(Mhz)")
    axacf.imshow(acf_mid,
                 aspect='auto',
                 extent=[
                     -(length / 60) / 2, (length / 60) / 2,
                     -(maxFreq - minFreq) / 2, (maxFreq - minFreq) / 2
                 ])
    axacf.contour(acf_mid,
                  aspect='auto',
                  extent=[
                      -(length / 60) / 2, (length / 60) / 2,
                      (maxFreq - minFreq) / 2, -(maxFreq - minFreq) / 2
                  ])
    axacf.contour(acffit_2D,
                  aspect='auto',
                  extent=[
                      -(length / 60) / 2, (length / 60) / 2,
                      (maxFreq - minFreq) / 2, -(maxFreq - minFreq) / 2
                  ])
    axacf.set_xlabel("time(mins) \n Drift_rate=%.6f slope_visibility=%.6f" %
                     (Drift_rate, slope_visibility))

    t_y = np.linspace(np.min(midACF_time) - 0.1, 1.1 * np.max(midACF_time), 20)
    t_x = []
    for i in range(20):
        t_x.append(np.sqrt(1 / opt_t))

    axtime.set_title("%s MJD %s " % (pulsar, mjd), fontsize=12)
    axtime.xaxis.set_major_formatter(nullfmt)
    axtime.scatter(fitxplot_t, midACF_time)
    axtime.set_xlim(-(length / 60) / 2, (length / 60) / 2)
    timelen = len(midACF_time)
    axtime.set_ylim(
        np.min(midACF_time[int(0.25 * timelen):int(0.75 * timelen)]) - 0.1,
        np.max(midACF_time[int(0.25 * timelen):int(0.75 * timelen)]) + 0.1)
    axtime.plot(t_x, t_y, color='red', linewidth=4.0)
    axtime.plot(extrapolx_t, extrapoly_t, linewidth=4.0)
    axtime.locator_params(axis='y', tight=True, nbins=5)

    f_x = np.linspace(np.min(midACF_freq) - 0.1, 1.2 * np.max(midACF_freq), 20)
    f_y = []
    for i in range(20):
        f_y.append(-np.sqrt(np.log(2) / opt_f))

    axfreq.yaxis.set_major_formatter(nullfmt)
    axfreq.scatter(midACF_freq, fitxplot_f)
    freqlen = len(midACF_freq)
    axfreq.set_xlim(
        np.min(midACF_freq[int(0.25 * freqlen):int(0.75 * freqlen)]) - 0.1,
        1.2 * np.max(midACF_freq[int(0.25 * freqlen):int(0.75 * freqlen)]))
    axfreq.set_ylim(-(maxFreq - minFreq) / 2, (maxFreq - minFreq) / 2)
    #axfreq.set_xlabel("freq: \n%.4f(%.4f) Mhz" % (freq1D, freq_error))
    #axfreq.set_title("observation time: %.4f \n time: %.4f +- %.4f Min \n \n \n" % (length/60, time1D, time_error),fontsize=12)
    axfreq.plot(f_x, f_y, color='red', linewidth=4.0)
    axfreq.plot(extrapoly_f, extrapolx_f, linewidth=4.0)
    axfreq.locator_params(axis='x', tight=True, nbins=5)

    filename = archive.rsplit('.')[0]

    if args.savefigure:
        plt.savefig('%s_all.eps' % filename)
        plt.clf()
    else:
        plt.show()
Esempio n. 23
0
def scatter_im(
    X,
    imfunc,
    zoom=1,
    dims_to_plot=[0, 1],
    ax=None,
    inset=False,
    inset_offset=0.15,
    inset_width_and_height=0.1,
    plot_range=[0.05, 99.95],
    inset_colors=None,
    inset_scatter_size=25,
    inset_title=None,
    inset_clims=None,
):
    # Adapted from https://stackoverflow.com/questions/22566284/matplotlib-how-to-plot-images-instead-of-points/53851017

    if ax is None:
        ax = plt.gca()

    artists = []

    for i in range(X.shape[0]):
        im = OffsetImage(imfunc(i), zoom=zoom)
        ab = AnnotationBbox(
            im,
            (X[i, dims_to_plot[0]], X[i, dims_to_plot[1]]),
            xycoords="data",
            frameon=False,
        )
        artists.append(ax.add_artist(ab))

    ax.update_datalim(X[:, dims_to_plot])
    ax.autoscale()

    ax.xaxis.set_ticks_position("none")
    ax.yaxis.set_ticks_position("none")

    x_lb, x_hb = np.percentile(X[:, dims_to_plot[0]], plot_range)
    y_lb, y_hb = np.percentile(X[:, dims_to_plot[1]], plot_range)

    x_pad = (x_hb - x_lb) * 0.1
    y_pad = (y_hb - y_lb) * 0.1

    ax.set_xlim(x_lb - x_pad, x_hb + x_pad)
    ax.set_ylim(y_lb - y_pad, y_hb + y_pad)

    ax.set_facecolor((0, 0, 0))
    nullfmt = NullFormatter()
    ax.xaxis.set_major_formatter(nullfmt)
    ax.yaxis.set_major_formatter(nullfmt)

    ax.axis("off")

    ax_inset = None
    if inset:

        offset = 0.15

        inset = [
            offset,
            1 - inset_offset - inset_width_and_height,
            inset_width_and_height,
            inset_width_and_height,
        ]
        ax_inset = plt.axes(inset)

        if inset_clims is None and (not isinstance(inset_colors, str)):
            inset_clims = np.percentile(inset_colors, [0, 100])

        ax_inset.scatter(
            X[:, dims_to_plot[0]],
            X[:, dims_to_plot[1]],
            s=inset_scatter_size,
            c=inset_colors,
            vmin=inset_clims[0],
            vmax=inset_clims[1],
        )

        for k in ax_inset.spines:
            ax_inset.spines[k].set_color("w")

        #         ax_inset.set_facecolor('w')
        ax_inset.xaxis.label.set_color("w")
        ax_inset.yaxis.label.set_color("w")

        ax_inset.tick_params(axis="x", colors="w")
        ax_inset.tick_params(axis="y", colors="w")

        if inset_title is not None:
            ax_inset.set_title(inset_title)

        return ax, ax_inset

    plt.sca(ax)

    return ax
Esempio n. 24
0
def plotall(args, archive, pulsar, mjd, intensity, minFreq, maxFreq, length,
            extrapolx_f, extrapoly_f, fitxplot_f, extrapolx_t, extrapoly_t,
            fitxplot_t, freq1D, time1D, freq_error, time_error, midACF_freq,
            midACF_time, acf_mid, opt_f, opt_t, secondary, acffit_2D, f_end,
            t_end, mhzperbin, minperbin, Drift_rate, slope_visibility,
            sec_axes):
    nullfmt = NullFormatter()  # no labels
    # definitions for the axes
    left_edge = 0.06
    bottom_edge = 0.13
    width = 0.24
    height = 0.75
    space = 0.005

    rect_dysp = [left_edge, bottom_edge, width, height - 0.21]
    rect_acf = [left_edge + width + space, bottom_edge, width, height - 0.21]
    rect_time = [left_edge + width + space, height - 0.07, width, 0.26]
    rect_freq = [
        left_edge + 2 * width + space, bottom_edge, 0.12, height - 0.21
    ]
    rect_sec = [
        left_edge + 2 * width + space + space + 0.18, bottom_edge, 0.25,
        height - 0.15
    ]

    plt.figure(1, figsize=(14, 6))
    axdysp = plt.axes(rect_dysp)
    axacf = plt.axes(rect_acf)
    axtime = plt.axes(rect_time)
    axfreq = plt.axes(rect_freq)
    axsec = plt.axes(rect_sec)

    axdysp.imshow(intensity,
                  aspect='auto',
                  extent=[0, length / 60, minFreq, maxFreq],
                  vmax=1,
                  vmin=-0.1,
                  cmap='jet',
                  interpolation='None')
    axdysp.set_xlabel("time(mins)")
    axdysp.set_ylabel("frequency(Mhz)")
    axdysp.set_title(
        "%s \n MJD %s \nTime:%.4f +- %.4f mins \n freq: %.4f +- %.4f Mhz \n observation time: %.4f mins\n \n"
        % (pulsar, mjd, time1D, time_error, freq1D, freq_error, length / 60),
        fontsize=12)

    axacf.yaxis.set_major_formatter(nullfmt)
    axacf.imshow(acf_mid,
                 aspect='auto',
                 extent=[
                     -(length / 60) / 2, (length / 60) / 2,
                     -(maxFreq - minFreq) / 2, (maxFreq - minFreq) / 2
                 ])
    axacf.contour(acf_mid,
                  aspect='auto',
                  extent=[
                      -(length / 60) / 2, (length / 60) / 2,
                      (maxFreq - minFreq) / 2, -(maxFreq - minFreq) / 2
                  ])
    axacf.contour(acffit_2D,
                  aspect='auto',
                  extent=[
                      -(length / 60) / 2, (length / 60) / 2,
                      (maxFreq - minFreq) / 2, -(maxFreq - minFreq) / 2
                  ])
    axacf.set_xlabel("Drift_rate=%.6f \n slope_visibility=%.6f" %
                     (Drift_rate, slope_visibility))

    t_y = np.linspace(np.min(midACF_time) - 0.1, 1.1 * np.max(midACF_time), 20)
    t_x = []
    for i in range(20):
        t_x.append(np.sqrt(1 / opt_t))

    axtime.xaxis.set_major_formatter(nullfmt)
    axtime.scatter(fitxplot_t, midACF_time)
    axtime.set_xlim(-(length / 60) / 2, (length / 60) / 2)
    timelen = len(midACF_time)
    axtime.set_ylim(
        np.min(midACF_time[int(0.25 * timelen):int(0.75 * timelen)]) - 0.1,
        np.max(midACF_time[int(0.25 * timelen):int(0.75 * timelen)]) + 0.1)
    axtime.plot(t_x, t_y, color='red', linewidth=4.0)
    axtime.plot(extrapolx_t, extrapoly_t, linewidth=4.0)
    axtime.locator_params(axis='y', tight=True, nbins=5)

    f_x = np.linspace(np.min(midACF_freq) - 0.1, 1.2 * np.max(midACF_freq), 20)
    f_y = []
    for i in range(20):
        f_y.append(-np.sqrt(np.log(2) / opt_f))

    axfreq.yaxis.set_major_formatter(nullfmt)
    axfreq.scatter(midACF_freq, fitxplot_f)
    freqlen = len(midACF_freq)
    axfreq.set_xlim(
        np.min(midACF_freq[int(0.25 * freqlen):int(0.75 * freqlen)]) - 0.1,
        1.2 * np.max(midACF_freq[int(0.25 * freqlen):int(0.75 * freqlen)]))
    axfreq.set_ylim(-(maxFreq - minFreq) / 2, (maxFreq - minFreq) / 2)
    #axfreq.set_xlabel("freq: \n%.4f(%.4f) Mhz" % (freq1D, freq_error))
    #axfreq.set_title("observation time: %.4f \n time: %.4f +- %.4f Min \n \n \n" % (length/60, time1D, time_error),fontsize=12)
    axfreq.plot(f_x, f_y, color='red', linewidth=4.0)
    axfreq.plot(extrapoly_f, extrapolx_f, linewidth=4.0)
    axfreq.locator_params(axis='x', tight=True, nbins=5)

    sec_mean = np.mean(secondary)
    axsec.imshow(secondary,
                 aspect='auto',
                 origin='lower',
                 cmap='binary',
                 extent=[sec_axes[2], sec_axes[3], sec_axes[0], sec_axes[1]],
                 interpolation='None',
                 vmax=sec_mean + 8,
                 vmin=sec_mean + 2)
    axsec.set_xlabel(r'Fringe Frequency ($10^{-3}$Hz)')
    axsec.set_ylabel(r'Delay ($\mu$s)')
    axsec.set_title("Secondary spectra")

    filename = archive.rsplit('.')[0]

    if args.savefigure:
        plt.savefig('%s_all.eps' % filename)
        plt.clf()
    else:
        plt.show()
Esempio n. 25
0
from yt.mods import *
import yt.visualization.eps_writer as EPS
from matplotlib import rc
import matplotlib.pyplot as plt
from matplotlib.font_manager import fontManager, FontProperties

font = FontProperties(size='small')
rc('font', family='serif', serif='cmr10', size=18)

from matplotlib.ticker import NullFormatter

nullfmt = NullFormatter()


########################################################################
# Derived fields
########################################################################
def _MyRadius(field, data):
    center = data.get_field_parameter("center")
    dx = data["x"] - center[0]
    dy = data["y"] - center[1]
    dz = data["z"] - center[2]
    return na.sqrt(dx * dx + dy * dy + dz * dz)


add_field("Radius", function=_MyRadius, take_log=False, units='')


def _MyIonizedFrac(field, data):
    return data['HII_Fraction'] / 0.75908798
Esempio n. 26
0
#ax2.set_xscale('log')
ax2.set_xlim(left=0.8,right=4.2)
ax2.set_xticks([1,2,3,4])
ax2.xaxis.set_major_formatter(ScalarFormatter())
ax2.yaxis.set_major_formatter(ScalarFormatter())
ax2.ticklabel_format(axis='both', style='plain')

ax2_sec = ax2.twiny()
#ax2_sec.set_xscale('log')
ax2_sec.set_xlim(ax2.get_xlim())

mass_values = np.array([13.0,14.0, 14.5, 15.0, 15.5])
new_tick_locations = peak_mass(mass_values)
print(mass_values)
print(new_tick_locations)
ax2_sec.xaxis.set_major_formatter(NullFormatter())
ax2_sec.xaxis.set_minor_formatter(NullFormatter())
ax2_sec.tick_params(axis='x', which='minor', top=False)
ax2_sec.set_xticks(new_tick_locations)
ax2_sec.set_xticklabels(mass_values)
#xmin,xmax=ax2.get_xlim()
#print(xmin,xmax)
#print(Mass_peak(xmin),Mass_peak(xmax))
#ax2_sec.set_xlim(Mass_peak(xmin),Mass_peak(xmax))
#ax2_sec.set_xscale('log')
#ax2_sec.set_xticks(new_tick_locations)

ax2.set_ylabel(r'$\lambda$', fontsize=12)
ax2.set_xlabel(r'$\nu$ = $\delta_{\rm c}$/$\sigma$', fontsize=12)
ax2_sec.set_xlabel(r'$\log_{10}$M [M$_{\odot}$/h]', fontsize=12)
ax2_sec.tick_params(labelsize=12)
Esempio n. 27
0
# Perform Locally Linear Embedding Manifold learning
methods = ['standard', 'ltsa', 'hessian', 'modified']
labels = ['LLE', 'LTSA', 'Hessian LLE', 'Modified LLE']

for i, method in enumerate(methods):
    t0 = time()
    trans_data = manifold\
        .LocallyLinearEmbedding(n_neighbors, 2,
                                method=method).fit_transform(sphere_data).T
    t1 = time()
    print("%s: %.2g sec" % (methods[i], t1 - t0))

    ax = fig.add_subplot(252 + i)
    plt.scatter(trans_data[0], trans_data[1], c=colors, cmap=plt.cm.rainbow)
    plt.title("%s (%.2g sec)" % (labels[i], t1 - t0))
    ax.xaxis.set_major_formatter(NullFormatter())
    ax.yaxis.set_major_formatter(NullFormatter())
    plt.axis('tight')

# Perform Isomap Manifold learning.
t0 = time()
trans_data = manifold.Isomap(n_neighbors, n_components=2)\
    .fit_transform(sphere_data).T
t1 = time()
print("%s: %.2g sec" % ('ISO', t1 - t0))

ax = fig.add_subplot(257)
plt.scatter(trans_data[0], trans_data[1], c=colors, cmap=plt.cm.rainbow)
plt.title("%s (%.2g sec)" % ('Isomap', t1 - t0))
ax.xaxis.set_major_formatter(NullFormatter())
ax.yaxis.set_major_formatter(NullFormatter())
Esempio n. 28
0
 def cla(self):
     GeoAxes.cla(self)
     self.yaxis.set_major_formatter(NullFormatter())
Esempio n. 29
0
def dEdxCorrelation(data_set_list, x_bins, y_bins, x_label, y_label):

    # Set up the plots:
    # definitions for the axes
    left, width = 0.1, 0.65
    bottom, height = 0.1, 0.65
    bottom_h = left_h = left + width + 0.02

    rect_scatter = [left, bottom, width, height]
    rect_histx = [left, bottom_h, width, 0.2]
    rect_histy = [left_h, bottom, 0.2, height]

    # start with a rectangular Figure
    plt.figure(1, figsize=(8, 8))

    axScatter = plt.axes(rect_scatter)
    # plt.xlabel("dE/dx [MeV/cm], {l}".format(l=branch_name_x))
    plt.xlabel(x_label)
    # plt.ylabel("dE/dx [MeV/cm], {l}".format(l=branch_name_y))
    plt.ylabel(y_label)

    axHistx = plt.axes(rect_histx)
    axHisty = plt.axes(rect_histy)

    nullfmt = NullFormatter()  # no labels

    # no labels
    axHistx.xaxis.set_major_formatter(nullfmt)
    axHistx.yaxis.set_major_formatter(nullfmt)
    axHisty.xaxis.set_major_formatter(nullfmt)
    axHisty.yaxis.set_major_formatter(nullfmt)

    axHistx.set_ylim([0, 1.0])
    axHisty.set_xlim([0, 1.0])

    # Unpack the tuples and draw them:

    for _set in data_set_list:

        hist_data_x, x_bin_edges = numpy.histogram(_set.values_x,
                                                   x_bins,
                                                   density=True)
        hist_data_y, y_bin_edges = numpy.histogram(_set.values_y,
                                                   y_bins,
                                                   density=True)

        max_val = numpy.max((numpy.max(hist_data_x), numpy.max(hist_data_y)))

        hist_data_x *= 0.75 / max_val
        hist_data_y *= 0.75 / max_val

        x_centers = []
        for i in xrange(len(x_bin_edges) - 1):
            x_centers.append(0.5 * (x_bin_edges[i] + x_bin_edges[i + 1]))
        y_centers = []
        for i in xrange(len(y_bin_edges) - 1):
            y_centers.append(0.5 * (y_bin_edges[i] + y_bin_edges[i + 1]))

        # the scatter plot:
        axScatter.errorbar(_set.values_x,
                           _set.values_y,
                           xerr=_set.x_errs,
                           yerr=_set.y_errs,
                           ls="",
                           marker=_set.marker,
                           label=_set.label,
                           c=_set.color)

        axHistx.errorbar(
            x_centers,
            hist_data_x,
            # xerr=binwidth*0.5,
            # yerr=electron_err_norm_x,
            label=_set.label,
            capsize=0,
            marker=_set.marker,
            color=_set.color)

        axHisty.errorbar(
            hist_data_y,
            y_centers,
            # xerr=binwidth*0.5,
            # yerr=electron_err_norm_x,
            label=_set.label,
            capsize=0,
            marker=_set.marker,
            color=_set.color)

    axScatter.legend()

    # # Set limits for dE/dx values
    axScatter.set_xlim((x_bins[0], x_bins[-1]))
    axScatter.set_ylim((y_bins[0], y_bins[-1]))
    # axScatter.grid(True)

    axHistx.set_xlim(axScatter.get_xlim())
    axHisty.set_ylim(axScatter.get_ylim())

    axHistx.grid(True)
    axHisty.grid(True)
    axScatter.grid(True)
    # plt.legend()

    plt.show()
Esempio n. 30
0
 def set_default_locators_and_formatters(self, axis):
     axis.set_major_locator(HlogMajorLocator())
     axis.set_major_formatter(LogFormatterMathtext(10))
     axis.set_minor_locator(HlogMinorLocator())
     axis.set_minor_formatter(NullFormatter())
     pass