def scatter_plot(P, L, pcIdx1, pcIdx2, letterList, rev): fig = plt.figure() # following the convention in lecture note ScatterPlot.html colors = ["r", "lime", "b", "y", "c", "m", "k", "tan", "pink", "darkred"] for i, letter in enumerate(letterList): plt.scatter(P[L == letter, pcIdx2], P[L == letter, pcIdx1], s=0.1, c=colors[i], label=letter) plt.axes().set_aspect('equal') #plt.axes().set_aspect('equal', 'datalim') plt.xlabel("Principle Component {}".format(pcIdx2)) plt.ylabel("Principle Component {}".format(pcIdx1)) plt.axhline(0, color='grey') plt.axvline(0, color='grey') plt.ylim([-5000, 5000]) plt.xlim([-5000, 5000]) plt.legend() plt.gca().invert_yaxis() fig.set_size_inches(8, 8) fName = os.path.join( pDir, 'scatter_PC{}_PC{}_{}_{}.png'.format(pcIdx1, pcIdx2, "".join(letterList), rev)) savefig(fName, bbox_inches='tight') plt.show()
def showModeless(self): fig = figure(1) ax = axes([0.025, 0.5-len(self.checkStates)*.05*.5, 0.14, len(self.checkStates)*.05]) self.yBtns = CheckButtons(ax, self.names, [self.checkStates[name] for name in self.names]) self.yBtns.on_clicked(self.onItemselected) axes([0.2, 0.1, 0.75, 0.85]) self.plot() manager = get_current_fig_manager() self.loadSetting(manager.window) self.registerCallbacks(fig, manager.window)
def Plot_Circle(c_list): plt.figure() plt.axes().set_aspect('equal') plt.xlim([-1, 1]) plt.ylim([-1, 1]) theta = np.linspace(0, 2 * np.pi, 90) for c in c_list: x = c.x y = c.y r = c.radius plt.plot(x + r * np.cos(theta), y + r * np.sin(theta), 'r') plt.show()
def showModeless(self): fig = figure(1) ax = axes([ 0.025, 0.5 - len(self.checkStates) * .05 * .5, 0.14, len(self.checkStates) * .05 ]) self.yBtns = CheckButtons( ax, self.names, [self.checkStates[name] for name in self.names]) self.yBtns.on_clicked(self.onItemselected) axes([0.2, 0.1, 0.75, 0.85]) self.plot() manager = get_current_fig_manager() self.loadSetting(manager.window) self.registerCallbacks(fig, manager.window)
def feature_PCA(): my_arrays = load_data(0, get_avg=True) for i in range(1, 89): my_arrays = np.concatenate((my_arrays, load_data(i, get_avg=True)), axis=0) my_tensor = torch.from_numpy(my_arrays) my_labels = np.loadtxt('hist/rotation.txt') color_choice = ['b', 'g', 'r', 'yellow'] pca = PCA(n_components=3) x_numpy = my_tensor.data.cpu().numpy() x_pca = pca.fit_transform(x_numpy) plt.figure() ax = plt.axes(projection='3d') for i in range(x_pca.shape[0]): color_index = int(my_labels[i]) # plt.plot(x_pca[i, 0], x_pca[i, 1], 'o', color=color_choice[color_index]) ax.scatter(x_pca[i, 0], x_pca[i, 1], x_pca[i, 2], color=color_choice[color_index]) # plt.text(X_norm[i, 0], X_norm[i, 1], str(y[i]), color=plt.cm.Set1(y[i]), # fontdict={'weight': 'bold', 'size': 9}) ax.set_xlabel('X Label') ax.set_ylabel('Y Label') ax.set_zlabel('Z Label') plt.show()
def __save(self,n,plot,sfile): p.figure(figsize=sfile) p.xlabel(plot.xlabel) p.ylabel(plot.ylabel) p.xscale(plot.xscale) p.yscale(plot.yscale) p.grid() for curve in plot.curves: if curve[1] == None: p.plot(curve[0],curve[2], label=curve[3]) else: p.plot(curve[0], curve[1], curve[2], label=curve[3]) p.rc('legend', fontsize='small') p.legend(shadow=0, loc='best') p.axes().set_aspect(plot.aspect) if not plot.dir: plot.dir = './plots/' if not plot.name: plot.name = self.__global_name+'_%0*i'%(2,n) if not os.path.isdir(plot.dir): os.mkdir(plot.dir) if plot.pgf: p.savefig(plot.dir+plot.name+'.pgf') else: p.savefig(plot.dir+plot.name+'.pdf', bbox_inches='tight') p.close()
def __init__(self): QWidget.__init__(self) self.fig = plt.figure() self.canvas = FigureCanvas(self.fig) self.ax = plt.axes(projection='3d') self.affichageCourbe('Maillage\Rectangular_HULL_Normals_Outward.stl') self.canvas.draw() layout = QVBoxLayout() layout.addWidget(self.canvas) self.setLayout(layout)
def dimension_reduction(method, dimension): my_arrays = load_data(0, get_avg=True) for i in range(1, 89): my_arrays = np.concatenate((my_arrays, load_data(i, get_avg=True)), axis=0) # print(my_arrays.shape) my_tensor = torch.from_numpy(my_arrays) my_labels = np.loadtxt('hist/rotation.txt') print(my_labels.shape) # time.sleep(30) color_choice = ['b', 'g', 'r', 'yellow'] # print(my_tensor) if method == 'tsne': module = manifold.TSNE(n_components=dimension, init='random', random_state=500, early_exaggeration=5, method='exact') elif method == 'PCA': module = PCA(n_components=3) x_numpy = my_tensor.data.cpu().numpy() x_reduced = module.fit_transform(x_numpy) print(x_reduced.shape) print(x_reduced) plt.figure() if dimension == 2: for i in range(x_reduced.shape[0]): color_index = int(my_labels[i]) plt.plot(x_reduced[i, 0], x_reduced[i, 1], 'o', color=color_choice[color_index]) plt.xticks() plt.yticks() elif dimension == 3: ax = plt.axes(projection='3d') for i in range(x_reduced.shape[0]): color_index = int(my_labels[i]) ax.scatter(x_reduced[i, 0], x_reduced[i, 1], x_reduced[i, 2], color=color_choice[color_index]) ax.set_xlabel('X Label') ax.set_ylabel('Y Label') ax.set_zlabel('Z Label') plt.savefig('plots/{}-24bin-{}d.pdf'.format(method, dimension)) plt.show()
def feature_visualization(method, dimension): color_choice = ['b', 'g', 'r', 'yellow'] x_numpy = np.loadtxt('experiments/features.txt') my_labels = np.loadtxt('experiments/features_labels.txt') print(x_numpy.shape) time.sleep(30) if method == 'tsne': module = manifold.TSNE(n_components=dimension, init='pca', random_state=500, early_exaggeration=20, method='exact') elif method == 'PCA': module = PCA(n_components=3) x_reduced = module.fit_transform(x_numpy) print(x_reduced.shape) print(x_reduced) plt.figure() if dimension == 2: for i in range(x_reduced.shape[0]): color_index = int(my_labels[i]) if my_labels[i] == 0: status = 'Died' else: status = 'Survived' plt.plot(x_reduced[i, 0], x_reduced[i, 1], 'o', color=color_choice[color_index], label=status) plt.xticks() plt.yticks() elif dimension == 3: ax = plt.axes(projection='3d') for i in range(x_reduced.shape[0]): color_index = int(my_labels[i]) ax.scatter(x_reduced[i, 0], x_reduced[i, 1], x_reduced[i, 2], color=color_choice[color_index]) ax.set_xlabel('X Label') ax.set_ylabel('Y Label') ax.set_zlabel('Z Label') plt.legend(loc="lower right") plt.savefig('experiments/{}_{}.pdf'.format(method, dimension)) plt.show()
def plot_cov(qstack): fig = plt.figure() ax = plt.axes(None, label=str(qstack.bin_size)) flux_corr = np.corrcoef(qstack.fs_boot, rowvar=False) flux_covar = qstack.flux_covar im = ax.pcolormesh(qstack.wave_grid, qstack.wave_grid, flux_corr, vmin=-1, vmax=1) plt.ylim(qstack.wave_grid[-1], qstack.wave_grid[0]) cbar = fig.colorbar(im, ax=ax) cbar.set_label('Correlation') #plt.title("Continuum Normalized Flux Covariance Matrix Across Wavelength Bins") plt.xlabel("Wavelength Bin (Angstroms)") plt.ylabel("Wavelength Bin (Angstroms)")
def plot_std(qstack): plt.figure() flux_covar = qstack.flux_covar std = np.sqrt(np.diagonal(flux_covar)) ax = plt.axes(None, label=str(bin_size)) plt.plot(qstack.wave_stack, qstack.flux_stack, label='Stacked Flux') ax.fill_between(qstack.wave_stack, qstack.flux_stack - std, qstack.flux_stack + std, alpha=0.25, label="1-$\\sigma$ Uncertainty Range") #plt.title("Stacked Continuum Normalized Flux Near Ly-$\\alpha$ Transition") plt.xlabel("Wavelength (Angstroms)") plt.ylabel("Stacked Continuum Normalized Flux") plt.axvline(x=1215.67, color='red', linestyle='--') plt.legend()
def glm_scatter(x, y, pdf_path=None, title=None, x_label='x', y_label='y', formula='y ~ x', show_sum=False): """Creates a scatter plot with a GLM model running through the data :param x: :param y: :param pdf_name: :param title: :param x_label: :param y_label: :param formula: :param show_sum: :return: """ # Make the plotting grid a = plt.axes(title=title) a.set_xlabel(x_label) a.set_ylabel(y_label) # Prepare data and model scatter_df = pd.DataFrame({'x': x, 'y': y}).sort_values('x') mod = smf.ols(formula=formula, data=scatter_df).fit() scatter_df['pred'] = mod.predict(scatter_df['x']) scatter_df.plot('x', 'y', kind='scatter', ax=a) scatter_df.plot('x', 'pred', ax=a, color='r') # Show plot plt.show() if pdf_path: pdf_path = add_filetype(pdf_path, '.pdf') with PdfPages(pdf_path) as pdf: plt.savefig(pdf, format='pdf') plt.close('all') if show_sum: print(mod.summary()) breaks()
def plot_boot(qstack): plt.figure() flux_covar = qstack.flux_covar std = np.sqrt(np.diagonal(flux_covar)) ax = plt.axes(None, label=str(bin_size)) num = 100 ws_boot = qstack.ws_boot[:100] fs_boot = qstack.fs_boot[:100] plt.plot(ws_boot.T, fs_boot.T, alpha=0.1, color='orange') plt.plot(ws_boot[0], fs_boot[0], alpha=0.1, color='orange', label='Bootstrap Samples') plt.plot(qstack.wave_stack, qstack.flux_stack, label='Stacked Flux') #plt.title("Stacked Continuum Normalized Flux Near Ly-$\\alpha$ Transition") plt.xlabel("Wavelength (Angstroms)") plt.ylabel("Stacked Continuum Normalized Flux") plt.axvline(x=1215.67, color='red', linestyle='--') plt.legend()
fluo_paths = [] for i in xrange(len(paths)): emissions = [v_inf_mean[t] for t in paths[i]] f_cp = np.convolve(kernel[::-1], emissions, mode='full') f_cp = f_cp[w:-w + 1] fluo_paths.append(f_cp) #plt.plot(np.array(fluo_paths[-1])) #plt.plot(fluo_states[0]) #plt.show() #--------------------------------------Generate Animation--------------------------------------------------------------# # First set up the figure, the axis, and the plot element we want to animate fig = plt.figure() ax = plt.axes(xlim=(0, len(fluo_states[0])), ylim=(0, np.max(fluo_states[0]))) ax.plot(range(len(fluo_states[0])), fluo_states[0]) line, = ax.plot([], [], lw=4) # initialization function: plot the background of each frame def init(): line.set_data([], []) return line, # animation function. This is called sequentially def animate(i): y = np.array(fluo_paths[i]) x = np.arange(0, len(y)) line.set_data(x, y) return line,
s = Series(np.random.randn(10).cumsum(),index=np.arange(0,100,10)) s.plot() plt.save('Figure_14.png') df df = DataFrame(np.random.randn(10,4).cumsum(0), columns=['A','B','C','D'], index=np.arange(0,100,10)) df.plot df = DataFrame(np.random.randn(10,4).cumsum(0), columns=['A','B','C','D'], index=np.arange(0,100,10)) df.plot() plt.axes plt.axes() import matplotlib.pyplot as plt fig, axes = plt.subplots(2,1) data = Series(np.random.randn(16),index=list('abcdefghijklmnop')) data.plot(kind='bar', ax=axes[0],color='k', alpha=0.7) data = Series(np.random.rand(16),index=list('abcdefghijklmnop')) data.plot(kind='bar', ax=axes[0],color='k', alpha=0.7) fig, axes = plt.subplots(2,1) data = Series(np.random.rand(16),index=list('abcdefghijklmnop')) data.plot(kind='bar', ax=axes[0],color='k', alpha=0.7) data.plot(kind='barh', ax=axes[1],color='k', alpha=0.7) fig.savefig('Figure_16.png') df = DataFrame(np.random.rand(6,4),) df = DataFrame(np.random.rand(6,4), index=['r1','r2','r4','r5','r6'], columns=pd.Index(['A','B','C','D'],name='Genus'))
chetty.e_rank_b.plot.hist() # In[22]: chetty.shape # In[23]: low_100 = chetty.sort_values(by="e_rank_b").head(100) high_100 = chetty.sort_values(by="e_rank_b", ascending=False).head(100) # In[25]: imagery = img_tiles.GoogleTiles() ax = mpl.axes(projection=imagery.crs) #x0, x1, y0, y1 maps_limits = (-71.38, -70.77, 42.03, 42.47) ax.set_extent(maps_limits) ax.add_image(imagery, 10) mpl.plot(low_100.LON, low_100.LAT, transform=ccrs.Geodetic(), marker='.', markersize=10, color="red", linewidth=0, alpha=0.5)
plot(x, Psi0.conj().imag, 'y--', label=r"${\Psi_{0}}_{imag}$") legend() plt.show() # In[3]: from matplotlib import pyplot as plt import numpy as np from matplotlib.animation import FuncAnimation # initializing a figure in # which the graph will be plotted fig = plt.figure() # marking the x-axis and y-axis axis = plt.axes(xlim=(-50, 50), ylim=(-0.5, 1)) plt.plot(x, v(x) * 0.1) # initializing a line variable line = axis.plot(x, p[0].real**2 + p[0].imag**2, lw=2)[0] # data which the line will # contain (x, y) def init(): line.set_data([], []) return line def animate(i): # plots a sine graph line.set_ydata(p[i].real**2 + p[i].imag**2)
# In[33]: plotter.plot({'Basic': history}, metric="mae") plt.ylabel('MAE [Deaths]') # In[34]: plotter.plot({'Basic': history}, metric="mse") plt.ylabel('MSE [Deaths^2]') # In[35]: test_predictions = model.predict(normed_test_data).flatten() a = plt.axes(aspect='equal') plt.scatter(test_labels, test_predictions) plt.xlabel('True Values [Deaths]') plt.ylabel('Predictions [Deaths]') # In[36]: error = test_predictions - test_labels plt.hist(error, bins=25) plt.xlabel("Prediction Error [Deaths]") _ = plt.ylabel("Count") # In[37]: import plotly import plotly.figure_factory as ff
def feature_visualization_remake(vectors, labels, method, dimension, figname): class_num = int(np.max(labels) + 1) print('there are {} classes'.format(class_num)) # time.sleep(30) color_choice = ['g', 'r', 'b', 'yellow'] x_numpy = vectors my_labels = labels print('my_labels {}'.format(my_labels)) my_labels = np.reshape(my_labels, (my_labels.shape[0], 1)) mydata = np.concatenate((my_labels, x_numpy), axis=1) np.random.shuffle(mydata) x_numpy = mydata[:, 1:] my_labels = mydata[:, 0] print('Size of vectors {}'.format(x_numpy.shape)) print('Size of labels {}'.format(my_labels.shape)) if method == 'tsne': module = manifold.TSNE(n_components=dimension, init='random', random_state=10, early_exaggeration=20, method='barnes_hut') elif method == 'pca': module = PCA(n_components=100) x_reduced = module.fit_transform(x_numpy) plt.figure() plt.xticks([]) plt.yticks([]) plt.legend(loc="upper right") plt.tight_layout() if dimension == 2: for class_index in range(0, class_num): this_index = np.where(my_labels == class_index) class_vectors = x_reduced[this_index] plt.plot(class_vectors[:, 0], class_vectors[:, 1], 'o', color=color_choice[class_index], alpha=0.5, label='Class {}'.format(class_index)) if class_index == 1: plt.legend(loc="upper right") plt.savefig('experiments/{}_{}_{}_2.png'.format( method, dimension, figname)) elif dimension == 3: ax = plt.axes(projection='3d') for class_index in range(0, class_num): this_index = np.where(my_labels == class_index) class_vectors = x_reduced[this_index] ax.scatter(class_vectors[:, 0], class_vectors[:, 1], class_vectors[:, 2], color=color_choice[class_index], label='Class {}'.format(class_index)) ax.set_xlabel('X Label') ax.set_ylabel('Y Label') ax.set_zlabel('Z Label') # plt.title('t-SNE Visualization of Patch-34 Feature Vectors') # plt.legend(loc="upper right") # plt.savefig('experiments/{}_{}_{}.pdf'.format(method, dimension)) plt.savefig('experiments/{}_{}_{}_3.png'.format(method, dimension, figname))
def feature_visualization2(method, dimension, point_num=1700): color_choice = ['b', 'g', 'r', 'yellow'] x_numpy = np.loadtxt('data/gt_vectors.txt') my_labels = np.loadtxt('data/gt_labels.txt') print('my_labels {}'.format(my_labels)) my_labels = np.reshape(my_labels, (my_labels.shape[0], 1)) mydata = np.concatenate((my_labels, x_numpy), axis=1) np.random.shuffle(mydata) x_numpy = mydata[:, 1:] my_labels = mydata[:, 0] x_numpy = x_numpy[:point_num, :] my_labels = my_labels[:point_num] print('Size of vectors {}'.format(x_numpy.shape)) print('Size of labels {}'.format(my_labels.shape)) # print('labels {}'.format(my_labels)) died_index = np.where(my_labels == 0) survived_index = np.where(my_labels == 1) if method == 'tsne': module = manifold.TSNE(n_components=dimension, init='pca', random_state=10, early_exaggeration=20, method='barnes_hut') elif method == 'pca': module = PCA(n_components=100) x_reduced = module.fit_transform(x_numpy) died_vector = x_reduced[died_index] survived_vector = x_reduced[survived_index] plt.figure() if dimension == 2: plt.plot(died_vector[:, 0], died_vector[:, 1], 'o', color='tomato', alpha=0.5, label='Deceased') plt.plot(survived_vector[:, 0], survived_vector[:, 1], 'o', color='limegreen', alpha=0.5, label='Survived') # plt.plot(x_reduced[i, 0], x_reduced[i, 1], 'o', color=color_choice[color_index]) plt.xticks([]) plt.yticks([]) elif dimension == 3: ax = plt.axes(projection='3d') ax.scatter(died_vector[:, 0], died_vector[:, 1], died_vector[:, 2], color='r', label='Died') ax.scatter(survived_vector[:, 0], survived_vector[:, 1], survived_vector[:, 2], color='g', label='Survived') ax.set_xlabel('X Label') ax.set_ylabel('Y Label') ax.set_zlabel('Z Label') # plt.title('t-SNE Visualization of Patch-34 Feature Vectors') plt.legend(loc="upper right") plt.tight_layout() plt.savefig('experiments/{}_{}.pdf'.format(method, dimension)) plt.savefig('experiments/{}_{}.png'.format(method, dimension)) plt.show()
n_redundant=0, random_state=42) train_X, test_X, train_y, test_y = train_test_split(X, y, random_state=42) model = LogisticRegression(random_state=42) model.fit(train_X, train_y) pred_y = model.predict(test_X) print(np.where(pred_y == 1, True, False)) print(np.where(pred_y == 1)) # In[162]: XI = np.linspace(-10, 10) #-10~10사이에 난수 생성, 이 때 간격은 거의 동일하다. Y = -model.coef_[0][0] / model.coef_[0][ 1] * XI - model.intercept_ / model.coef_[0][1] plt.plot(XI, Y) plt.xlim(min(X[:, 0]) - 0.5, max(X[:, 0]) + 0.5) plt.ylim(min(X[:, 1]) - 0.5, max(X[:, 1]) + 0.5) plt.axes().set_aspect('equal', 'datalim') # In[171]: model.coef_[0, 0] model.intercept_ # In[ ]:
def feature_visualization3(method, dimension, fold): color_choice = ['b', 'g', 'r', 'yellow'] x_numpy = np.loadtxt('experiments/features.txt') x_numpy = x_numpy[54 * fold:54 * (fold + 1)] my_labels = np.loadtxt('experiments/features_labels.txt') my_labels = my_labels[54 * fold:54 * (fold + 1)] print('Size of labels {}'.format(my_labels.shape)) # print('labels {}'.format(my_labels)) died_index = np.where(my_labels == 0) survived_index = np.where(my_labels == 1) if method == 'tsne': module = manifold.TSNE(n_components=dimension, init='pca', random_state=100, early_exaggeration=2000, method='exact') elif method == 'PCA': module = PCA(n_components=10) x_reduced = module.fit_transform(x_numpy) died_vector = x_reduced[died_index] survived_vector = x_reduced[survived_index] print(x_reduced) # plt.subplot(2, 5, i+1, figsize=(15, 15)) plt.figure(figsize=(5, 5)) if dimension == 2: plt.plot(died_vector[:, 0], died_vector[:, 1], 'o', color='r', alpha=0.5, label='Deceased') plt.plot(survived_vector[:, 0], survived_vector[:, 1], 'o', color='g', alpha=0.5, label='Survived') # axs[i//5, i%5].plot(died_vector[:, 0], died_vector[:, 1], 'o', color='r', alpha=0.5, label='Died') # axs[i//5, i%5].plot(survived_vector[:, 0], survived_vector[:, 1], 'o', color='g', alpha=0.5, label='Survived') # axs[i // 5, i % 5].axis('off') # axs[i // 5, i % 5].set_xticks([]) # axs[i // 5, i % 5].set_yticks([]) # plt.plot(x_reduced[i, 0], x_reduced[i, 1], 'o', color=color_choice[color_index]) plt.xticks([]) plt.yticks([]) elif dimension == 3: ax = plt.axes(projection='3d') ax.scatter(died_vector[:, 0], died_vector[:, 1], died_vector[:, 2], color='r', label='Died') ax.scatter(survived_vector[:, 0], survived_vector[:, 1], survived_vector[:, 2], color='g', label='Survived') ax.set_xlabel('X Label') ax.set_ylabel('Y Label') ax.set_zlabel('Z Label') # plt.title('t-SNE Visualization of Patch-34 Feature Vectors') plt.legend(loc="lower right") plt.savefig('experiments/tsne/{}_{}_{}.pdf'.format(method, dimension, fold)) plt.savefig('experiments/tsne/{}_{}_{}.jpg'.format(method, dimension, fold)) plt.show()
plt.figure(figsize=(8, 6)) plt.pie(values, labels=pollutants, explode=explode, autopct='%1.1f%%', shadow=True) plt.title('Air pollutants and their probable amount in atmosphere [India]') plt.axis('equal') plt.show() # # showing INDIA AQI on world map using cartopy # In[82]: import cartopy.crs as ccrs # In[83]: geo = data['city']['geo'] fig = plt.figure(figsize=(12, 10)) ax = plt.axes(projection=ccrs.PlateCarree()) ax.stock_img() plt.scatter(geo[1], geo[0], color='blue') plt.text(geo[1] + 3, geo[0] - 2, f'{name} AQI \n {aqi}', color='red') plt.show()
velocities = np.array(list(zip(np.sin(angles), np.cos(angles)))) def apply_boundary_conditions(self): """apply boundary conditions""" edge_buffer_radius = 2.0 for position in self.positions: x = position[0] y = position[1] if x > width + edge_buffer_radius: x = -edge_buffer_radius elif x < -edge_buffer_radius: x = width + edge_buffer_radius if y > height + edge_buffer_radius: y = -edge_buffer_radius elif y < -edge_buffer_radius: y = height + edge_buffer_radius position[0] = x position[1] = y figure = plt.figure() axes = plt.axes(xlim=(0, width), ylim=(0, height)) bird_bodies, = axes.plot([], [], markersize=10, c='k', marker='o', ls='None') #TODO Pick up here from page 76, code line 2 beak == bird_beak
skeleton = np.array(skeleton) - 1 for i in skeleton: if pose_3d[i[0]][2] != 0 and pose_3d[i[1]][2]: x = np.array([pose_3d[i[0]][0], pose_3d[i[1]][0]]) y = np.array([pose_3d[i[0]][1], pose_3d[i[1]][1]]) z = np.array([pose_3d[i[0]][2], pose_3d[i[1]][2]]) ax.plot3D(x, y, z, 'red') def add_point(pose_3d, ax): x, y, z = pose_3d[:, 0], pose_3d[:, 1], pose_3d[:, 2] ax.scatter3D(x, y, z, cmap='Greens') import matplotlib.pyplot as plt fig = plt.figure() ax = plt.axes(projection='3d') plt.ion() i = 0 for pose_3d in pose_3d_all: add_line(pose_3d, ax) add_point(pose_3d, ax) square_x = np.array([-2000, 1000]) square_y = np.array([-1000, 2000]) square_z = np.array([500, 3500]) ax.scatter3D(square_x, square_y, square_z, color='whitesmoke') plt.draw()
ax.set(aspect=1) #----------------- drawing box -------------------------------# xlim = ax.get_xlim() ylim = ax.get_ylim() box_x = [xlim[0], xlim[1], xlim[1], xlim[0], xlim[0]] box_y = [ylim[0], ylim[0], ylim[1], ylim[1], ylim[0]] ax.add_patch( patches.Rectangle((box_x[0], box_y[0]), xlim[1] - xlim[0], ylim[1] - ylim[0], fill=True, facecolor='white', clip_on=False, zorder=0.8)) ax.plot(box_x, box_y, color='blue', linewidth=5.0) plt.axes(ax) # 0 1 # ax = plt.subplot() # dy = (inverse((1, 0)) - inverse((1, -0.1)))[1] #xy = transform((j+0.8, energydif[j])) # print(dy, xy) # ax = plt.axes([xy[0], xy[1]-(dy)/2.6, 0.170, 0.170]) cell = atoms.get_cell() img = atoms.copy() plot_conf(ax, img, colorlenth, rot=True) ax.set_xlim([centreofmass[0] - 11.5, centreofmass[0] + 11.5]) ax.set_ylim([centreofmass[1] - 10.5, centreofmass[1] + 11.0]) ax.set_yticks([]) ax.set_xticks([]) ax.set(aspect=1)
def plotFeatureArrays(featureVecs, array_shape, n_figs=10, tiled=True, tiles_shape=(2, 5), tile_psn=(.1, .125, .4, .4), xlims=None, ylims=None, titles=None, xlabel=None, ylabel=None, noise_floor=None, extent=None, origin=None, colorbar=True): n_samples = featureVecs.shape[0] if tiled: sample_idxs = np.array(random.sample(range(n_samples)), np.prod(tiles_shape)).reshape(tiles_shape) plt.figure() for r in range(tiles_shape[0]): for c in range(tiles_shape[1]): idx = sample_idxs[r, c] arr = featureVecs[idx, :].reshape(array_shape) # set signal limits maxSig = arr.max() if noise_floor is not None: minSig = magSig - noise_floor arr[arr < minSig] = minSig minSig = arr.min() left = tile_psn[0] * (c + 1) + tile_psn[2] * c bottom = tile_psn[1] * (r + 1) + tile_psn[3] * r plt.axes((left, bottom, tile_psn[2], tile_psn[3])) plt.imshow(arr, extent=extent, aspect='auto', interpolation='nearest', origin=origin, cmap='binary', vmin=minSig, vmax=maxSig) if colorbar: plt.colorbar() if xlims is not None: plt.xlim(xlims) if ylims is not None: plt.ylim(ylims) if xlabel is not None and r == 0: plt.xlabel(xlabel) else: plt.xticks([]) if ylabel is not None and c == 0: plt.ylabel(ylabel) else: plt.yticks([]) if titles is not None: plt.title(title[idx]) plt.show() else: sample_idxs = np.array(random.sample(range(n_samples)), n_figs) for idx in sample_idxs: arr = featureVecs[idx, :].reshape(array_shape) # set signal limits maxSig = arr.max() if noise_floor is not None: minSig = magSig - noise_floor arr[arr < minSig] = minSig minSig = arr.min() plt.figure() plt.axes(tile_psn) plt.imshow(arr, extent=extent, aspect='auto', interpolation='nearest', origin=origin, cmap='binary', vmin=minSig, vmax=maxSig) if colorbar: plt.colorbar() if xlims is not None: plt.xlim(xlims) if ylims is not None: plt.ylim(ylims) if xlabel is not None and r == 0: plt.xlabel(xlabel) else: plt.xticks([]) if ylabel is not None and c == 0: plt.ylabel(ylabel) else: plt.yticks([]) if titles is not None: plt.title(title[idx]) plt.show()
ages = user_fields.map(lambda x: int(x[1])).collect() hist(ages, bins=20, color='lightblue', normed=True) fig = plt.pyplot.gcf() fig.set_size_inches(16, 10) count_by_occupation = user_fields.map(lambda fields: (fields[3], 1)).reduceByKey(lambda x, y: x + y).collect() x_axis1 = np.array([c[0] for c in count_by_occupation]) y_axis1 = np.array([c[1] for c in count_by_occupation]) x_axis = x_axis1[np.argsort(y_axis1)] y_axis = y_axis1[np.argsort(y_axis1)] pos = np.arange(len(x_axis)) width = 1.0 ax = plt.axes() ax.set_xticks(pos + (width / 2)) ax.set_xticklabels(x_axis) plt.bar(pos, y_axis, width, color='lightblue') plt.xticks(rotation=30) fig = plt.pyplot.gcf() fig.set_size_inches(16, 10) count_by_occupation2 = user_fields.map(lambda fields: fields[3]).countByValue() print "Map-reduce approach:" print dict(count_by_occupation2) print "" print "countByValue approach:" print dict(count_by_occupation) '''
#Define v_jhat_t - as v[1](y) multiplied by transformed vector jhat v_jhat_t = v[1] * jhat_t #TODO 3.:Define transformed vector v(v_t) as #vector v_ihat_t added to vector v_jhat_t v_t = None #Plot that graphically shows vector v (color = 'skyblue') can be transformed #into transformed vector v(v_trfm - color ='b') by adding v[0]*transformed #vector ihat to v[0]*transformed vector jhat #Creates axes of plot referenced 'ax' ax = plt.axes() #Plots red dot at origin (0,0) ax.plot(0, 0, 'or') #Plots vector v_ihat as dotted green arrow starting at origin 0,0 ax.arrow(0, 0 * v_ihat, color='g', linestyle='dotted', linewidth=2.5, head_width=0.30, head_length=0.35) #Plots vector v_jhat_t as dotted red arrow starting at origin defined by v_ihat ax.arrow(v_ihat - t[0],
def create_surface(self): #create initial surface to 'erode' veclength = self.length * self.width #create vector with enough numbers to fill a length*width matrix mean, sd = 0, self.height #height is standard deviation around mean height of zero heightlist = np.random.normal( mean, sd, veclength ) #samples the proper number of random heights, around a mean of 0, with sd defined by 'height' heightlist = np.around( heightlist, 2) #rounds the heights to the nearest two decimal places heightlist = heightlist.reshape( (self.width, self.length) ) #turns the heights into a matrix with the proper dimensions for length and width print(heightlist) xlist = [] #creates empty list to hold x values (correspond to width) ylist = [] #creates empty list to hold y values (correspond to length) zlist = [] #creates empty list to hold z values (correspond to height) for y in range(self.length): #for each y value from 0 to the length... for x in range( self.width): #for each x value from 0 to the width... xlist.append(x) #add that x value in to a list of x values ylist.append(y) #add that y value to a list of y values z = heightlist[ x, y] #find the z value (already in the matrix) for that [x,y] pair print('Z: ', str(z)) zlist.append(z) #add that z value to the list of z values print('XLIST: ', xlist) print('LENXLST', str(len(xlist))) print('YLIST: ', ylist) print('LENYLIST: ', str(len(ylist))) print('ZLIST: ', zlist) print('LENZLIST: ', str(len(zlist))) #TODO turn length and width into meshgrid lengthlist, widthlist = np.arange(self.length), np.arange( self.width ) #create arrays containing all possible numbers in length and width values meshlength, meshwidth = np.meshgrid( lengthlist, widthlist) #create meshgrid for those length and width arrays print('MESHLENGTH:') print(meshlength) print('MESHWIDTH:') print(meshwidth) #TODO select random points out of length, width and height num_sampled = math.floor( len(xlist) / 4 ) #use around 1/4 of the points in the matrix as sample points for extrapolation sample_points = random.sample( range(len(xlist)), num_sampled ) #knowing the number of points to be sampled, chose the sample point indices print('SAMPLE POINTS: ', sample_points) xlist, ylist, zlist = np.asarray(xlist), np.asarray(ylist), np.asarray( zlist) #turn the x,y, and z lists into np arrays xsamples, ysamples, zsamples = xlist[[sample_points]], ylist[[ sample_points ]], zlist[[ sample_points ]] #choose the sample points from the arrays based on predetermined indices (same for each) print('XSAMPLES: ', xsamples) print('XYZsamples done') print('XSAMPLES TYPE: ', type(xsamples)) print('YSAMPLES TYPE: ', type(ysamples)) print('ZSAMPLES TYPE: ', type(zsamples)) gridz0 = griddata( (xsamples, ysamples), zsamples, (meshwidth, meshlength )) #apply griddata to extrapolate the rest of the height values print('GRIDZ0: ', gridz0) fig = plt.figure() ax = plt.axes(projection='3d') #create 3D projection ax.plot_surface( meshwidth, meshlength, gridz0 ) #plot it using meshwidth as X, meshlength as Y, and gridz0 as Z plt.show()
def feature_visualization2(method, dimension): color_choice = ['b', 'g', 'r', 'yellow'] x1 = np.load('./ChaData/feature1.npy') print(x1.shape) # y1 = np.ones_like(x1) x2 = np.load('./MyData/feature1.npy') print(x2.shape) # y2 = np.zeros_like(x2) # x2 = x2[100:x2.shape[0]] x_numpy = np.zeros((x1.shape[0] + x2.shape[0], 4096)) my_labels = np.zeros((x1.shape[0] + x2.shape[0])) x_numpy[0:x1.shape[0]] = x1 x_numpy[x1.shape[0]:x1.shape[0] + x2.shape[0]] = x2 my_labels[0:x1.shape[0]] = 1 my_labels[x1.shape[0]:x1.shape[0] + x2.shape[0]] = 0 # x_numpy = np.load('./ChaData/feature.npy') # my_labels = np.load('./ChaData/label.npy') print('Size of data {}'.format(x_numpy.shape)) print('Size of labels {}'.format(my_labels.shape)) died_index = np.where(my_labels == 0) survived_index = np.where(my_labels == 1) if method == 'tsne': module = manifold.TSNE(n_components=dimension, init='pca', random_state=100, early_exaggeration=20, method='exact') elif method == 'PCA': module = PCA(n_components=10) x_reduced = module.fit_transform(x_numpy) print(x_reduced) died_vector = x_reduced[died_index] survived_vector = x_reduced[survived_index] plt.figure() if dimension == 2: plt.plot(died_vector[:, 0], died_vector[:, 1], 'ro', label='Target Domain') #alpha=0.4 plt.plot(survived_vector[:, 0], survived_vector[:, 1], 'b^', label='Source Domain') #, alpha=0.4 # plt.plot(x_reduced[i, 0], x_reduced[i, 1], 'o', color=color_choice[color_index]) plt.xticks() plt.yticks() # fig = plt.gcf() # dna1name='tsne'+'.png' # fig.savefig(dna1name,dpi=100) elif dimension == 3: ax = plt.axes(projection='3d') ax.scatter(died_vector[:, 0], died_vector[:, 1], died_vector[:, 2], color='r', label='Target Domain') ax.scatter(survived_vector[:, 0], survived_vector[:, 1], survived_vector[:, 2], color='g', label='Source Domain') ax.set_xlabel('X Label') ax.set_ylabel('Y Label') ax.set_zlabel('Z Label') # plt.title('t-SNE Visualization of Source And Target Domain Feature Vectors') plt.legend(loc="upper right") plt.savefig('tsne1.png', dpi=300) plt.show() return x_reduced
u_var = one_sig_upper - tqmed l_var = tqmed - one_sig_lower print("{0} stack, bin size = {1}, tq =".format(stack, bin_size), tqmed, '+', u_var, '-', l_var) #tqmed = 5.9 cov_interp = interpol.interp1d(tqs, mod_covars, axis=0) #flux_covar = cov_interp(8.7) flux_covar = cov_interp(tqmed) fig = plt.figure() ax = plt.axes(None, label=str(k)) corr = flux_covar / np.sqrt( np.outer(np.diag(flux_covar), np.diag(flux_covar))) im = ax.pcolormesh(qstack.wave_grid[:last_in + 1], qstack.wave_grid[:last_in + 1], corr) plt.ylim(qstack.wave_grid[-2], qstack.wave_grid[0]) cbar = fig.colorbar(im, ax=ax) cbar.set_label('Correlation') #plt.title("Continuum Normalized Flux Covariance Matrix Across Wavelength Bins") plt.xlabel("Wavelength Bin (Angstroms)") plt.ylabel("Wavelength Bin (Angstroms)") plt.savefig('model/corr_{1}_tq{0:.2f}.pdf'.format(tqmed, bin_size)) plt.figure() std = np.sqrt(np.diagonal(flux_covar)) mean_mod = model(waves, tqmed)
Qs=abs((masses[2]-masses[1])/(masses[1]-masses[0])) Qs_target=abs((drs[2]**order-drs[1]**order)/(drs[1]**order-drs[0]**order)) print 'Qs =',Qs,'Qs target =',Qs_target # PLOT RESULTS ------------------------------------------------------------------ ls=['-.','--','-'] #line styles #plot masses, pressures, density for best resolution run r=arange(0.,drs[-1]*isurf/1e5,drs[-1]/1e5) # in km rect=[0.1,0.1,0.8,0.8] print r[-1], tovs[-1][isurf,3]/msun a1=axes(rect) a1.yaxis.tick_left() plot(r,tovs[-1][:isurf,1]/pressc,'r', # plot pressure r,tovs[-1][:isurf,0]/rhoc,'g') # and density ylim([0,1.05]) xscale('log') ylabel('Pressure (P_c), Density (rho_c)') xlabel('Radius (km)') a2=axes(rect,frameon=False) a2.yaxis.tick_right() plot([0],[0],'r',[0],[0],'g',r,tovs[-1][:isurf,3]/msun,'b') # plot mass a2.yaxis.set_label_position('right') ylabel('Mass (Msun)') a2.set_xticks([])