def plot_feature_importances_cancer(model, cancer): n_features = cancer.data.shape[1] plt.barh(np.arange(n_features), model.feature_importances_, align='center') plt.yticks(np.arange(n_features), cancer.feature_names) plt.xlabel("Feature importance") plt.ylabel("Feature") plt.ylim(-1, n_features)
def check_sanity(): fig = plt.figure(figsize=[10, 5]) # Axes for flower image ax = fig.add_axes([.5, .4, .5, .5]) # Displaay image result = process_image('flowers/test/1/image_06743.jpg') ax = imshow(result, ax) ax.axis('off') index = 77 ax.set_title(cat_to_name[str(index)]) # Prediction of image predictions, classes = predict('flowers/test/1/image_06743.jpg', model, device=device) # Create bar graph # Axis x and y ax1 = fig.add_axes([0, -.4, .888, .888]) # Classes probability y_pos = np.arange(len(classes)) # Horizontal bar chart to see it better plt.barh(y_pos, predictions, align='center', alpha=0.5) plt.yticks(y_pos, classes) plt.xlabel('probabilities') plt.show()
def plot_feature_importances_cancer(scores): names, val_scores = [name for name, _, _, _, _, _, _ in scores ], [score for _, score, _, _, _, _, _ in scores] plt.rcParams["figure.figsize"] = [15, 9] n_features = len(names) plt.barh(range(n_features), val_scores, align='center') plt.yticks(np.arange(n_features), names) plt.xlabel("Accuracy") plt.ylabel("Model") path = WORKING_PATH + "/___comparison_cancer_model.png" plt.savefig(path) plt.clf() return path
def plotting_feature_importance(importance, model): """Plot the feature importances of the forest""" std = np.std([modelo.feature_importances_ for modelo in model.estimators_], axis=0) index = np.argsort(feten) plt.figure(figsize=(15, 15)) plt.title("Feature importances") plt.barh(range(X_train.values.shape[1]), feten[index], color="r", xerr=std[index], align="center") plt.yticks(range(X_train.values.shape[1]), index) plt.ylim([-1, X_train.values.shape[1]]) return plt.show()
# TODO: Display an image along with the top 5 classes model.eval() class_names = [] # Process Image image_path = 'input2.png' # Give image to model to predict output probs, classes, image = predict(image_path, model) print('probs: {} and classes: {}'.format(probs, classes)) print(probs, classes) print(cat_to_name) print(model.class_to_idx) #probs=probs.detach.numpy() #classes=classes.detach.numpy() print(probs, classes) print(classes[0]) for i in classes[0]: class_names.append(model.class_to_idx.item(int(classes[0, i]))) print(class_names) for c in classes: class_names.append(cat_to_name[c]) print('classnames: {}'.format(class_names)) # Show the image ax = imshow(image) plt.barh(probs, class_names) plt.xlabel('Probability') plt.title('Predicted Flower Names') plt.show()
zz=yy.iloc[:,[5,6,7,8]] d=zz[(zz.differ_day_standard!=0)|(zz.differ_day_source_copy2!=0)|(zz.differ_day_source!=0)|(zz.differ_day_standard_copy2!=0)] standard=to_list(d["differ_day_standard"]) source=to_list(d["differ_day_source"]) source_copy2=to_list(d["differ_day_source_copy2"]) standard_copy2=to_list(d["differ_day_standard_copy2"]) zhaoyang=[0]*len(standard) y=range(len(standard)) x1=sorted(standard) x2=sorted(source) x3=sorted(source_copy2) x4=sorted(standard_copy2) plt.barh(range(len(x1)), x1) plt.barh(range(len(x2)), x2) plt.barh(range(len(x3)), x3) plt.barh(range(len(x4)), x4) plt.show()
def main(argv): print("hello") # 读取表格 data = xlrd.open_workbook("developers.xlsx") # 获取表格的sheets table = data.sheets()[0] # 输出行数量 print(table.nrows) # 8 # 输出列数量 print(table.ncols) # 4 # 获取第一行数据 row1data = table.row_values(0) print(row1data) # ['列1', '列2', '列3', '列4'] print(row1data[0]) # 列1 from pyecharts.charts import Bar # 读取表格 # data = xlrd.open_workbook("developers.xlsx") # 获取表格的sheets table = data.sheets()[0] # 输出行数量 print(table.nrows) # 输出列数量 print(table.ncols) # 获取第一行数据 row1data = table.row_values(0) print(row1data) # ['列1', '列2', '列3', '列4'] print(row1data[0]) # 列1 xdata = [] ydata = [] for i in range(1, table.nrows): print(table.row_values(i)) xdata.append(table.row_values(i)[0]) ydata.append(table.row_values(i)[1]) print(xdata) print(ydata) # 数据可视化,柱状图 bar = Bar() bar.add_xaxis(xdata) bar.add_yaxis("名称1", ydata) bar.render("show.html") plt.bar(xdata, ydata) x = [2010, 2011, 2012, 2013, 2014, 2015, 2016, 2017, 2018, 2019] y = [5, 3, 6, 20, 17, 16, 19, 30, 32, 35] plt.plot(x, y) plt.show() a = np.random.randn(100) s = pd.Series(a) plt.hist(s) plt.show() x = ['Cat1', 'Cat2', 'Cat3', 'Cat4', 'Cat5'] y = [5, 4, 8, 12, 7] plt.bar(x, y) plt.show() x = ['Cat1', 'Cat2', 'Cat3', 'Cat4', 'Cat5'] y = [5, 4, 8, 12, 7] plt.barh(x, y) plt.show() nums = [25, 37, 33, 37, 6] labels = ['High-school', 'Bachelor', 'Master', 'Ph.d', 'Others'] plt.pie(x=nums, labels=labels) plt.show() # 生成0-1之间的10*4维度数据 data = np.random.normal(size=(10, 4)) lables = ['A', 'B', 'C', 'D'] # 用Matplotlib画箱线图 plt.boxplot(data, labels=lables) plt.show() # flights = sns.load_dataset("flights") # data = flights.pivot('year', 'month', 'passengers') # sns.heatmap(data) # plt.show() N = 1000 x = np.random.randn(N) y = np.random.randn(N) plt.scatter(x, y, marker='x') plt.show() N = 10000 x = np.random.randn(N) y = np.random.randn(N) plt.scatter(x, y, marker='x') plt.show() labels = np.array([u"推进", "KDA", u"生存", u"团战", u"发育", u"输出"]) stats = [83, 61, 95, 67, 76, 88] # 画图数据准备,角度、状态值 angles = np.linspace(0, 2 * np.pi, len(labels), endpoint=False) stats = np.concatenate((stats, [stats[0]])) angles = np.concatenate((angles, [angles[0]])) # 用Matplotlib画蜘蛛图 fig = plt.figure() ax = fig.add_subplot(111, polar=True) ax.plot(angles, stats, 'o-', linewidth=2) ax.fill(angles, stats, alpha=0.25) # 设置中文字体 # font = FontProperties(fname=r"/System/Library/Fonts/PingFang.ttc", size=14) # ax.set_thetagrids(angles * 180/np.pi, labels, FontProperties=font) plt.show() # tips = sns.load_dataset("tips") # tips.head(10) # # 散点图 # sns.jointplot(x="total_bill", y="tip", data=tips, kind='scatter') # # # Hexbin图 # sns.jointplot(x="total_bill", y="tip", data=tips, kind='hex') # plt.show() df = pd.DataFrame(np.random.rand(10, 4), columns=['a', 'b', 'c', 'd']) # 堆面积图 df.plot.area() # 面积图 df.plot.area(stacked=False) df = pd.DataFrame(np.random.randn(1000, 2), columns=['a', 'b']) df['b'] = df['b'] + np.arange(1000) # 关键字参数gridsize;它控制x方向上的六边形数量,默认为100,较大的gridsize意味着更多,更小的bin df.plot.hexbin(x='a', y='b', gridsize=25) print("end")
import matplotlib as plt import seaborn as sns sns.set() config = configparser.ConfigParser() config.read('willy.ini') # postgresql_pwd = config['POSTGRESQL'][ 'PASSWORD_POSTGRESQL'] # PostgreSQL password # # # Make connection tot PostgreSQL database # db_string = 'postgresql+psycopg2://postgres:' + postgresql_pwd + '@10.10.1.35/Willy' # # Make connection to database with correct string # conn = create_engine(db_string) teprinten = pd.read_sql_query('select * from navigation_geometry', con=conn) fig = plt.figure() plt.barh(teprinten['id'], teprinten['linear_x'], color='blue', align='center') plt.title('Geometrie van navigatie', fontsize=16) plt.xlabel('ID', fontsize=13) plt.ylabel('Lineair X', fontsize=13) plt.show() naam = 'geometrie,jpg' grid.fig.tight_layout(w_pad=1) fig.savefig(naam) plt.show()
plot([1,2,3,4,5,6]) #y轴点图 plot([4,3,2,1],[1,2,3,4]) #(y,x)轴的值 import matplotlib.pyplot as plt x = [1,2,3,4] #some data y = [5,4,3,2] # create new figure plt.figure() plt.subplot(231) # plot折线图 plt.plot(x, y) plt.subplot(232) # 柱状图 plt.bar(x, y) plt.subplot(233) # 条状图 plt.barh(x, y) plt.subplot(234) # stacked bar charts堆叠柱状图 plt.bar(x, y) y1 = [7,8,5,3] # more data for stacked bar charts plt.bar(x, y1, bottom=y, color = 'r') # 底线[5,4,3,2] + 柱长[7,8,5,3] plt.subplot(235) # 箱线图 plt.boxplot(x) plt.subplot(236) # 散点图 plt.scatter(x,y) dataset = [113,115,119,121,124,