Esempio n. 1
0
def jacobi_method(mat_a, epsilon=1e-9, b_verbose=False):
    n = len(mat_a)

    mat_a0 = matrix.alloc_mat(n, n)
    for i in range(n):
        for j in range(n):
            mat_a0[i][j] = mat_a[i][j]

    mat_x = matrix.get_identity_matrix(n)

    #############################
    while True:
        abs_ars, ars, r, s = find_r_s(mat_a0, n)

        if abs_ars < epsilon:
            break
        if b_verbose:
            print("ars = %s" % ars)
            print("r, s = (%g, %g)" % (r, s))

        arr = mat_a0[r][r]
        ass = mat_a0[s][s]

        theta_rad = calc_theta(ars, arr, ass)
        if b_verbose:
            print("theta = %s (deg)" % (theta_rad * 180 / math.pi))
        cos = math.cos(theta_rad)
        sin = math.sin(theta_rad)

        for k in range(n):
            if k == r:
                pass
            elif k == s:
                pass
            else:
                akr = mat_a0[k][r]
                aks = mat_a0[k][s]
                mat_a0[r][k] = akr * cos + aks * sin
                mat_a0[s][k] = aks * cos - akr * sin

                mat_a0[k][r] = mat_a0[r][k]
                mat_a0[k][s] = mat_a0[s][k]

            xkr = mat_x[k][r]
            xks = mat_x[k][s]
            mat_x[k][r] = xkr * cos + xks * sin
            mat_x[k][s] = xks * cos - xkr * sin

        mat_a0[r][
            r] = arr * cos * cos + 2.0 * ars * sin * cos + ass * sin * sin
        mat_a0[s][
            s] = arr * sin * sin - 2.0 * ars * sin * cos + ass * cos * cos
        mat_a0[r][s] = mat_a0[s][r] = 0.0
        if b_verbose:
            print("mat_a0")
            matrix.show_mat(mat_a0)
            print("mat_x")
            matrix.show_mat(mat_x)

    return mat_a0, mat_x
def gauss_elimination(mat_a, b):
    """
    1차 다원 연립 방정식 Ax = b에서 x를 구함
    A : 계수행렬
    b : 상수벡터
    :param mat_a:
    :param b:
    :return:
    """

    m_row, n_col = matrix.shape(mat_a)
    mat_a_vec_b = matrix.alloc_mat(m_row, n_col + 1)

    for i in range(m_row):
        for j in range(n_col):
            mat_a_vec_b[i][j] = mat_a[i][j]
        mat_a_vec_b[i][-1] = b[i]

    upper_triangle(mat_a_vec_b)

    x = back_substitution(mat_a_vec_b)

    del mat_a_vec_b[:]
    del mat_a_vec_b

    return x
Esempio n. 3
0
def generate_mat_ai(mat_a):
    m_row, n_col = matrix.shape(mat_a)
    mat_ai = matrix.alloc_mat(m_row, n_col + m_row)
    for i_pivot in range(m_row):
        for j_col in range(n_col):
            mat_ai[i_pivot][j_col] = mat_a[i_pivot][j_col]

        mat_ai[i_pivot][n_col + i_pivot] = 1.0

    return mat_ai
Esempio n. 4
0
def initialize_jacobi_method(mat_a):

    remove_all_figure_files()

    n = len(mat_a)
    mat_a0 = matrix.alloc_mat(n, n)
    for i in range(n):
        for j in range(n):
            mat_a0[i][j] = mat_a[i][j]
    mat_x = matrix.get_identity_matrix(n)
    counter = 0
    return mat_a0, mat_x, n, counter
Esempio n. 5
0
def initialize_jacobi_method(mat_a:Matrix, b_plot:bool=False) -> Tuple[Matrix, Matrix, int, int]:

    if b_plot:
        matshow.remove_all_figure_files()

    n = len(mat_a)
    mat_a0 = matrix.alloc_mat(n, n)

    for i in range(n):
        for j in range(n):
            mat_a0[i][j] = mat_a[i][j]
    mat_x = matrix.get_identity_matrix(n)

    counter = 0

    return mat_a0, mat_x, n, counter
Esempio n. 6
0
def gauss_elimination(mat_a, b):
    m_row, n_col = matrix.shape(mat_a)
    mat_a_vec_b = matrix.alloc_mat(m_row, n_col + 1)

    for i in range(m_row):
        for j in range(n_col):
            mat_a_vec_b[i][j] = mat_a[i][j]
        mat_a_vec_b[i][-1] = b[i]

    upper_triangle(mat_a_vec_b)

    x = back_substitution(mat_a_vec_b)

    del mat_a_vec_b[:]
    del mat_a_vec_b
    return x
Esempio n. 7
0
def gauss_jordan(mat_a):
    mat_ai = generate_mat_ai(mat_a)

    for i_pivot in range(len(mat_ai)):
        matrix.row_mul_scalar(mat_ai, i_pivot, 1.0 / mat_ai[i_pivot][i_pivot])
        for j_row in range(len(mat_ai)):
            if i_pivot != j_row:
                matrix.row_mul_add(mat_ai, j_row, i_pivot,
                                   -mat_ai[j_row][i_pivot])

    inv_mat = matrix.alloc_mat(
        len(mat_ai),
        len(mat_ai),
    )

    for i in range(len(mat_ai)):
        for j in range(len(mat_ai)):
            inv_mat[i][j] = mat_ai[i][len(mat_ai) + j]

    del mat_ai[:]
    del mat_ai

    return inv_mat