def test_swap_funcs(self):
     M1 = mf.create_matrix(100, 100)
     M2 = mf.create_matrix(100, 100)
     expected = np.dot(M1, M2)
     np.testing.assert_array_equal(expected, mf.scipy_csc_dot_numpy_with_swap(M1, M2))
     np.testing.assert_array_equal(expected, mf.scipy_csr_dot_numpy_with_swap(M1, M2))
     np.testing.assert_array_equal(expected, mf.scipy_bsr_dot_numpy_with_swap(M1, M2))
def run_performance_test(items_in_matrix, number_of_timings, functions):
    test_results = {f.__name__:[] for f in functions}
    for n in items_in_matrix:
        dense_matrix = mf.create_matrix(n, n, 0.01)
        sparse_matrix = mf.create_matrix(n, n, 0.99)
        for func in functions:
            test_results[func.__name__].append(bf.test_performance(func, number_of_timings, dense_matrix, sparse_matrix))
            print(func.__name__, n)
    return test_results
def run_performance_test(items_in_matrix, number_of_timings, functions):
    test_results = {f.__name__: [] for f in functions}
    for n in items_in_matrix:
        dense_matrix = mf.create_matrix(n, n, 0.01)
        sparse_matrix = mf.create_matrix(n, n, 0.99)
        for func in functions:
            test_results[func.__name__].append(
                bf.test_performance(func, number_of_timings, dense_matrix,
                                    sparse_matrix))
            print(func.__name__, n)
    return test_results
def run_performance_test(functions, items_pro_dimension, sparsities):
    """
    Runs the benchmark.
    Parameters
    ----------
    functions - the functions under test
    items_pro_dimension - number of items pro matrix dimenstion
    sparsities - a list of values between 0 and 1 which define the percent zeros in each matrix.

    Returns a dictionary with the avg. results and std. for each function
    -------

    """
    results = {
        size: {f.__name__: []
               for f in functions}
        for size in items_pro_dimension
    }
    for key, dimension in items_pro_dimension.items():
        for sparsity in sparsities:
            matrix_1 = mf.create_matrix(dimension, dimension, sparsity)
            matrix_2 = matrix_1.T
            for func in functions:
                results[key][func.__name__].append(
                    bf.test_performance(func, number_of_timings, matrix_1,
                                        matrix_2))
                print(key, sparsity, func)
    return results
Esempio n. 5
0
def run_performance_test(sparsities, sparse_matrices, items_pro_dimension,
                         number_of_timings):
    """
    Runs the benchmark
    Parameters
    ----------
    sparsities a list of values between 0 and 1 the represent the tested sparsities
    sparse_matrices - the matrices under test
    items_pro_dimension - amount of items pro matrix dimension
    number_of_timings - amount of repeats pro test

    Returns a dictionary containing the avg timing and std. for each tested matrix.
    -------

    """
    results = {
        sparsity: {sm.__name__: []
                   for sm in sparse_matrices}
        for sparsity in sparsities
    }
    for sparsity in sparsities:
        for n in items_pro_dimension:
            M_1 = create_matrix(n, n, sparsity)
            M_2 = M_1.T

            for sm in sparse_matrices:
                M_1 = sm(M_1)
                M_2 = sm(M_2)
                results[sparsity][sm.__name__].append(
                    bf.test_performance_dot_sparse(number_of_timings, M_1,
                                                   M_2))
                print(sparsity, sm.__name__, n)
    return results
 def test_create_matrix_half_zeros(self):
     matrix = mf.create_matrix(10, 10, 0.5)
     zeros_count = 0
     for row in matrix:
         for i in row:
             if i == 0:
                 zeros_count+=1
     self.assertEquals(50, zeros_count)
def run_performance_test(items_pro_dimension, number_of_timings, functions):
    """
    Runs the Benchmark.
    Parameters
    ----------
    items_pro_dimension - number of items in each matrix dimension
    number_of_timings  - number of repeats for each timing
    functions - the functions under test

    Returns a dictionary with the avg. results and std. for each function
    -------

    """
    test_results = {f.__name__:[] for f in functions}
    for n in items_pro_dimension:
        dense_matrix = mf.create_matrix(n, n, 0.01)
        sparse_matrix = mf.create_matrix(n, n, 0.99)
        for func in functions:
            test_results[func.__name__].append(bf.test_performance(func, number_of_timings, dense_matrix, sparse_matrix))
            print(func.__name__, n)
    return test_results
Esempio n. 8
0
def run_performance_test(items_pro_dimension, number_of_timings, functions):
    """
    Runs the Benchmark.
    Parameters
    ----------
    items_pro_dimension - number of items in each matrix dimension
    number_of_timings  - number of repeats for each timing
    functions - the functions under test

    Returns a dictionary with the avg. results and std. for each function
    -------

    """
    test_results = {f.__name__: [] for f in functions}
    for n in items_pro_dimension:
        dense_matrix = mf.create_matrix(n, n, 0.01)
        sparse_matrix = mf.create_matrix(n, n, 0.99)
        for func in functions:
            test_results[func.__name__].append(
                bf.test_performance(func, number_of_timings, dense_matrix,
                                    sparse_matrix))
            print(func.__name__, n)
    return test_results
 def test_create_matrix_all_zeros(self):
     zeros_matrix = mf.create_matrix(10, 10, 1)
     if zeros_matrix.any() != 0:
         self.fail()
     self.assertTrue(True)
 def test_dot_scipy_funcs_with_conversion(self):
     M1 = mf.create_matrix(100, 100)
     expected = np.dot(M1, M1)
     np.testing.assert_array_equal(expected, mf.dot_scipy_csc_with_conversion(M1, M1))
     np.testing.assert_array_equal(expected, mf.dot_scipy_csr_with_conversion(M1, M1))
     np.testing.assert_array_equal(expected, mf.dot_scipy_bsr_with_conversion(M1, M1))
 def test_dot_numpy(self):
     M1 = mf.create_matrix(100, 100)
     M2 = mf.create_matrix(100, 100)
     expected = np.dot(M1, M2)
     np.testing.assert_array_equal(expected, mf.dot_numpy(M1,M2))
 def test_create_matrix_invalid_percent_zeros_too_high(self):
     matrix = mf.create_matrix(10, 10, 1.1)
 def test_create_matrix_invalid_percent_zeros_too_low(self):
     matrix = mf.create_matrix(10, 10, -0.1)
 def test_create_matrix_invalid_2nd_dimension(self):
     matrix = mf.create_matrix(10, 0, 0.5)
 def test_create_matrix_invalid_1st_dimension(self):
     matrix = mf.create_matrix(0, 10, 0.5)
 def test_create_matrix_all_ones(self):
     ones_matrix = mf.create_matrix(10, 10, 0)
     if ones_matrix.any() != 1:
         self.fail()
     self.assertTrue(True)