def most_similar_cosmul(self, positive=[], negative=[], topn=10): """ Find the top-N most similar words, using the multiplicative combination objective proposed by Omer Levy and Yoav Goldberg in [4]_. Positive words still contribute positively towards the similarity, negative words negatively, but with less susceptibility to one large distance dominating the calculation. In the common analogy-solving case, of two positive and one negative examples, this method is equivalent to the "3CosMul" objective (equation (4)) of Levy and Goldberg. Additional positive or negative examples contribute to the numerator or denominator, respectively – a potentially sensible but untested extension of the method. (With a single positive example, rankings will be the same as in the default most_similar.) Example:: >>> trained_model.most_similar_cosmul(positive=['baghdad', 'england'], negative=['london']) [(u'iraq', 0.8488819003105164), ...] .. [4] Omer Levy and Yoav Goldberg. Linguistic Regularities in Sparse and Explicit Word Representations, 2014. """ self.init_sims() if isinstance(positive, string_types) and not negative: # allow calls like most_similar_cosmul('dog'), as a shorthand for most_similar_cosmul(['dog']) positive = [positive] all_words = set([ self.vocab[word].index for word in positive + negative if not isinstance(word, ndarray) and word in self.vocab ]) positive = [ self.word_vec(word, use_norm=True) if isinstance( word, string_types) else word for word in positive ] negative = [ self.word_vec(word, use_norm=True) if isinstance( word, string_types) else word for word in negative ] if not positive: raise ValueError("cannot compute similarity with no input") # equation (4) of Levy & Goldberg "Linguistic Regularities...", # with distances shifted to [0,1] per footnote (7) pos_dists = [((1 + dot(self.syn0norm, term)) / 2) for term in positive] neg_dists = [((1 + dot(self.syn0norm, term)) / 2) for term in negative] dists = prod(pos_dists, axis=0) / (prod(neg_dists, axis=0) + 0.000001) if not topn: return dists best = matutils.argsort(dists, topn=topn + len(all_words), reverse=True) # ignore (don't return) words from the input result = [(self.index2word[sim], float(dists[sim])) for sim in best if sim not in all_words] return result[:topn]
def find_nn(i, syn0norm): #print(i) topn = 10 dists = dot(syn0norm, syn0norm[i]) if not topn: return dists best = matutils.argsort(dists, topn=topn + 1, reverse=True) # ignore (don't return) docs from the input result = [(sim, float(dists[sim])) for sim in best[1:]] return result[:topn]
def find_nn_idx(i, syn0norm, result_idxes): #print(i) topn = 10 dists = dot(syn0norm, syn0norm[i]) if not topn: return dists best = matutils.argsort(dists, topn=topn + 1, reverse=True) # ignore (don't return) docs from the input result = best[1:] result_idxes = np.array(result[:topn], copy=True) return result[:topn]
def most_similar(self, positive=[], negative=[], topn=10, clip_start=0, clip_end=None): """ Find the top-N most similar docvecs known from training. Positive docs contribute positively towards the similarity, negative docs negatively. This method computes cosine similarity between a simple mean of the projection weight vectors of the given docs. Docs may be specified as vectors, integer indexes of trained docvecs, or if the documents were originally presented with string tags, by the corresponding tags. The 'clip_start' and 'clip_end' allow limiting results to a particular contiguous range of the underlying doctag_syn0norm vectors. (This may be useful if the ordering there was chosen to be significant, such as more popular tag IDs in lower indexes.) """ self.init_sims() clip_end = clip_end or len(self.doctag_syn0norm) if isinstance(positive, string_types + integer_types) and not negative: # allow calls like most_similar('dog'), as a shorthand for most_similar(['dog']) positive = [positive] # add weights for each doc, if not already present; default to 1.0 for positive and -1.0 for negative docs positive = [ (doc, 1.0) if isinstance(doc, string_types + (ndarray,) + integer_types) else doc for doc in positive ] negative = [ (doc, -1.0) if isinstance(doc, string_types + (ndarray,) + integer_types) else doc for doc in negative ] # compute the weighted average of all docs all_docs, mean = set(), [] for doc, weight in positive + negative: if isinstance(doc, ndarray): mean.append(weight * doc) elif doc in self.doctags or doc < self.count: mean.append(weight * self.doctag_syn0norm[self._int_index(doc)]) all_docs.add(self._int_index(doc)) else: raise KeyError("doc '%s' not in trained set" % doc) if not mean: raise ValueError("cannot compute similarity with no input") mean = matutils.unitvec(array(mean).mean(axis=0)).astype(REAL) dists = dot(self.doctag_syn0norm[clip_start:clip_end], mean) if not topn: return dists best = matutils.argsort(dists, topn=topn + len(all_docs), reverse=True) # ignore (don't return) docs from the input result = [(self.index_to_doctag(sim), float(dists[sim])) for sim in best if sim not in all_docs] return result[:topn]
def accuracy(self, questions, restrict_vocab=30000, most_similar=most_similar, case_insensitive=True): """ Compute accuracy of the model. `questions` is a filename where lines are 4-tuples of words, split into sections by ": SECTION NAME" lines. See questions-words.txt in https://storage.googleapis.com/google-model-archive-source/v2/model.google.com/word2vec/source-archive.zip for an example. The accuracy is reported (=printed to log and returned as a list) for each section separately, plus there's one aggregate summary at the end. Use `restrict_vocab` to ignore all questions containing a word not in the first `restrict_vocab` words (default 30,000). This may be meaningful if you've sorted the vocabulary by descending frequency. In case `case_insensitive` is True, the first `restrict_vocab` words are taken first, and then case normalization is performed. Use `case_insensitive` to convert all words in questions and vocab to their uppercase form before evaluating the accuracy (default True). Useful in case of case-mismatch between training tokens and question words. In case of multiple case variants of a single word, the vector for the first occurrence (also the most frequent if vocabulary is sorted) is taken. This method corresponds to the `compute-accuracy` script of the original C word2vec. """ ok_vocab = [(w, self.vocab[w]) for w in self.index2word[:restrict_vocab]] ok_vocab = dict((w.upper(), v) for w, v in reversed( ok_vocab)) if case_insensitive else dict(ok_vocab) sections, section = [], None for line_no, line in enumerate(utils.smart_open(questions)): # TODO: use level3 BLAS (=evaluate multiple questions at once), for speed line = utils.to_unicode(line) if line.startswith(': '): # a new section starts => store the old section if section: sections.append(section) self.log_accuracy(section) section = { 'section': line.lstrip(': ').strip(), 'correct': [], 'incorrect': [] } else: if not section: raise ValueError( "missing section header before line #%i in %s" % (line_no, questions)) try: if case_insensitive: a, b, c, expected = [ word.upper() for word in line.split() ] else: a, b, c, expected = [word for word in line.split()] except: logger.info("skipping invalid line #%i in %s" % (line_no, questions)) continue if a not in ok_vocab or b not in ok_vocab or c not in ok_vocab or expected not in ok_vocab: logger.debug("skipping line #%i with OOV words: %s" % (line_no, line.strip())) continue original_vocab = self.vocab self.vocab = ok_vocab ignore = set([a, b, c]) # input words to be ignored predicted = None # find the most likely prediction, ignoring OOV words and input words sims = most_similar(self, positive=[b, c], negative=[a], topn=False, restrict_vocab=restrict_vocab) self.vocab = original_vocab for index in matutils.argsort(sims, reverse=True): predicted = self.index2word[index].upper( ) if case_insensitive else self.index2word[index] if predicted in ok_vocab and predicted not in ignore: if predicted != expected: logger.debug("%s: expected %s, predicted %s", line.strip(), expected, predicted) break if predicted == expected: section['correct'].append((a, b, c, expected)) else: section['incorrect'].append((a, b, c, expected)) if section: # store the last section, too sections.append(section) self.log_accuracy(section) total = { 'section': 'total', 'correct': sum((s['correct'] for s in sections), []), 'incorrect': sum((s['incorrect'] for s in sections), []), } self.log_accuracy(total) sections.append(total) return sections
def most_similar(self, positive=[], negative=[], topn=10, restrict_vocab=None, indexer=None): """ Find the top-N most similar words. Positive words contribute positively towards the similarity, negative words negatively. This method computes cosine similarity between a simple mean of the projection weight vectors of the given words and the vectors for each word in the model. The method corresponds to the `word-analogy` and `distance` scripts in the original word2vec implementation. If topn is False, most_similar returns the vector of similarity scores. `restrict_vocab` is an optional integer which limits the range of vectors which are searched for most-similar values. For example, restrict_vocab=10000 would only check the first 10000 word vectors in the vocabulary order. (This may be meaningful if you've sorted the vocabulary by descending frequency.) Example:: >>> trained_model.most_similar(positive=['woman', 'king'], negative=['man']) [('queen', 0.50882536), ...] """ self.init_sims() if isinstance(positive, string_types) and not negative: # allow calls like most_similar('dog'), as a shorthand for most_similar(['dog']) positive = [positive] # add weights for each word, if not already present; default to 1.0 for positive and -1.0 for negative words positive = [ (word, 1.0) if isinstance(word, string_types + (ndarray, )) else word for word in positive ] negative = [ (word, -1.0) if isinstance(word, string_types + (ndarray, )) else word for word in negative ] # compute the weighted average of all words all_words, mean = set(), [] for word, weight in positive + negative: if isinstance(word, ndarray): mean.append(weight * word) else: mean.append(weight * self.word_vec(word, use_norm=True)) if word in self.vocab: all_words.add(self.vocab[word].index) if not mean: raise ValueError("cannot compute similarity with no input") mean = matutils.unitvec(array(mean).mean(axis=0)).astype(REAL) if indexer is not None: return indexer.most_similar(mean, topn) limited = self.syn0norm if restrict_vocab is None else self.syn0norm[: restrict_vocab] dists = dot(limited, mean) if not topn: return dists best = matutils.argsort(dists, topn=topn + len(all_words), reverse=True) # ignore (don't return) words from the input result = [(self.index2word[sim], float(dists[sim])) for sim in best if sim not in all_words] return result[:topn]