Esempio n. 1
0
def rotaxis_rough_filt(proj, N_steps=10, sigma=5, accuracy=10):
    """calculate the rotation axis comparing 0 and 180 projection shift
    
    Parameters
    __________
    proj: 3D array
    N_steps: projections per degree
    by default it compares the central part of images (between 1/4 and 3/4 of shape)
    """
    a = proj.shape[1] // 4
    b = 3 * proj.shape[1] // 4
    c = proj.shape[2] // 4
    d = 3 * proj.shape[2] // 4

    cent = []
    N_rot = proj.shape[0] - 180 * N_steps

    for i in range(N_rot):
        im1 = filt_gauss_laplace(proj[i, a:b, c:d], sigma)
        im2 = np.flip(
            filt_gauss_laplace(proj[i + N_steps * 180, a:b, c:d], sigma), 1)
        distances = shift(im1, im2, accuracy)
        cent.append(proj[i].shape[1] / 2 + distances[1] / 2)
    return cent
Esempio n. 2
0
def read_flat(j):
    """
    j: int
        an index of the file that should be processed 
    Please note, j always starts from zero
    To open correct file, images array uses images[i][j + N_start-1]
    """

    #global ff_shared, ff_con, shifts, indexes, Pro

    #set local variables
    ff = tonumpyarray(ff_shared.shared_array_base, ff_shared.shape,
                      ff_shared.dtype)
    proj_loc = tonumpyarray(proj.shared_array_base, proj.shape, proj.dtype)
    shift = tonumpyarray(shifts.shared_array_base, shifts.shape, shifts.dtype)
    #LoI = tonumpyarray(indexes.shared_array_base, indexes.shape, indexes.dtype)

    ROI_ff = Pro.ROI_ff
    ROI = Pro.ROI
    images = Pro.images
    N_start = Pro.N_start
    Npad = Pro.Npad

    #read image and do ff-retrieval
    filt = []
    for i in np.arange(len(images)):
        im = tifffile.imread(images[i][j + N_start - 1])[ROI[1]:ROI[3],
                                                         ROI[0]:ROI[2]]

        index = SSIM_sf.SSIM(
            SSIM_const(im[ROI_ff[1]:ROI_ff[3], ROI_ff[0]:ROI_ff[2]]),
            ff_con[i]).ssim()

        im = im / ff[i][np.argmax(index)]
        filt.append(im)
        #LoI[j,i] = np.argmax(index)

    #calculate shift for holograms
    im_gau0 = var.filt_gauss_laplace(filt[0][ROI_ff[1]:ROI_ff[3],
                                             ROI_ff[0]:ROI_ff[2]],
                                     sigma=5)
    for i in np.arange(len(filt)):
        im_gau1 = var.filt_gauss_laplace(filt[i][ROI_ff[1]:ROI_ff[3],
                                                 ROI_ff[0]:ROI_ff[2]],
                                         sigma=5)
        shift[j, i] = (var.shift_distance(im_gau0, im_gau1, 10))

    #shift images
    filt = multiCTF.shift_imageset(np.asarray(filt), shift[j])
    filt = np.asarray(filt)

    #do CTF retrieval
    filt = np.pad(filt, ((0, 0), (Npad, Npad), (Npad, Npad)),
                  'edge')  # padding with border values
    filt = multiCTF.multi_distance_CTF(filt, beta_delta, fresnelN,
                                       zero_compensation)
    filt = filt[Npad:(filt.shape[0] - Npad), :]  # unpad images from the top

    #rotate the image to compensate for the inclined rotation axis
    #filt = rotate(filt, inclination, mode = 'nearest', axes = (1,0))

    #save to memory
    proj_loc[j] = filt