n_primal = 5 n_dual = 5 mu_water = 0.02 photons_per_pixel = 10000 DATA_FOLDER = '/media/tx-eva-cc/data/2018_03_26_WuHanTongJi/' # '/mnt/data2/Infervision/test_gt/dcm/' FNAME = 'LDHDLungSS40' # 'BJYY00191495T125' # dcm_name = '1517110864_075.dcm' #'/media/tx-eva-cc/data/2018_03_26_WuHanTongJi/1517110864/LDHDLungSS40' # '/media/tx-eva-cc/data/WHTJ_Test/1517068707' file_loader = FileLoader(DATA_FOLDER, exclude='L286') def generate_data(validation=False, data_folder=DATA_FOLDER, fname=FNAME): """Generate a set of random data.""" # n_iter = 1 if validation else n_data # y_arr = np.empty((n_iter, operator.range.shape[0], operator.range.shape[1], 1), dtype='float32') # x_true_arr = np.empty((n_iter, space.shape[0], space.shape[1], 1), dtype='float32') # if validation: # n_data = len([fname for fname in os.listdir(validation_path) # if os.path.isfile(os.path.join(validation_path, fname))]) # else: # n_data = len([fname for fname in os.listdir(train_path) # if os.path.isfile(os.path.join(train_path, fname))]) # y_arr = np.empty((n_data, operator.range.shape[0], operator.range.shape[1], 1), dtype='float32')
n_iter = 10 n_primal = 2 n_dual = 1 mu_water = 0.02 photons_per_pixel = 10000 batch_size = 1 DATA_FOLDER = '/media/tx-eva-cc/data/WHTJ_Test/1517068707/' train_path = os.path.join(DATA_FOLDER, 'train') validation_path = os.path.join(DATA_FOLDER, 'validation') folder_name = '1517068707' # print [os.path.isfile(os.path.join(validation_path,fname)) for fname in os.listdir(validation_path)] if not if_ordered: file_loader_train = FileLoader(train_path, exclude='') file_loader_validation = FileLoader(validation_path, exclude='') def generate_data(validation=False, img_num = 1): """Generate a set of random data.""" # n_iter = 1 if validation else n_data # y_arr = np.empty((n_iter, operator.range.shape[0], operator.range.shape[1], 1), dtype='float32') # x_true_arr = np.empty((n_iter, space.shape[0], space.shape[1], 1), dtype='float32') # if validation: # n_data = len([fname for fname in os.listdir(validation_path) # if os.path.isfile(os.path.join(validation_path, fname))]) # else: # n_data = len([fname for fname in os.listdir(train_path) # if os.path.isfile(os.path.join(train_path, fname))]) # y_arr = np.empty((n_data, operator.range.shape[0], operator.range.shape[1], 1), dtype='float32')