Esempio n. 1
0
        grp = h5f.create_group('xpcs')
        qtmp = grp.create_dataset('q_points', (3, N, N),
                                  'f',
                                  chunks=(1, N, N),
                                  compression="gzip",
                                  shuffle=True)
        qtmp.attrs['wavelen'] = wavelen
        qtmp.attrs['theta'] = [-10, 10]
        qtmp.attrs['theta_units'] = 'degree'
        qtmp.attrs['content'] = 'qx, qy, qz'
        qtmp[0, :, :] = q_points[..., 0].reshape((N, N))
        qtmp[1, :, :] = q_points[..., 1].reshape((N, N))
        qtmp[2, :, :] = q_points[..., 2].reshape((N, N))
        # read data
        dset = grp.create_dataset('imgs', (Nsteps, N, N),
                                  'f',
                                  chunks=(1, N, N),
                                  compression="gzip",
                                  shuffle=True)

        # turn the crank
        t0 = time.time()
        for i, fname in enumerate(binfiles):
            print(fname)
            pts = read_lammps_bin(fname)
            img = mdscatter.dft(pts, q_points)
            img = np.abs(img)**2
            dset[i, :, :] = np.reshape(img, (N, N))
        t1 = time.time() - t0
        print('time taken = %f\n' % t1)
if __name__ == '__main__':
    wavelen = 0.1
    qvals = qvals(nrow = N, ncol = N)

    outf = 'xpcs' + str(N).zfill(5) + '.h5'
    h5f = h5py.File(outf, 'w')
    grp = h5f.create_group('xpcs')
    qtmp = grp.create_dataset('q_points', (3, N*N), 'f')
    qtmp.attrs['wavelen'] = wavelen
    qtmp.attrs['theta'] = [-10, 10]
    qtmp.attrs['theta_units'] = 'degree'

    # List data files sorted by step number.
    steps = sorted(glob.glob('data/*.txt'), key=lambda name: int(name[8:-4]))
    Nsteps = len(steps)
    dset = grp.create_dataset('imgs', (Nsteps, N, N), 'f')    

    # turn the crank
    t0 = time.time()
    for i, npy in tqdm.tqdm(enumerate(steps), total=Nsteps):
        # Data is id, x, y ,z. Drop the id column.
        # Multiply by 16 to get the q-range for 8-ID-I setup.
        pts = 16 * np.loadtxt(npy, skiprows=9)[:, 1:]
        img = mdscatter.dft(pts, qvals)
        img = np.abs(img)**2
        dset[i,:,:] = np.reshape(img, (N, N))
    t1 = time.time() - t0
    print('time taken = %f\n' % t1)
    h5f.close()
Esempio n. 3
0
    sdd = 4.
    scale = 28
    center = (0, 768)

    beam_rad = 6 * scale
    detector = Lambda750k()
    qvecs = detector.qvectors(sdd, center, wavelen)

    outf = 'xpcs_out.h5'
    h5f = h5py.File(outf, 'w')
    grp = h5f.create_group('xpcs')
    qtmp = grp.create_dataset('q_points', (3, *detector.shape), 'f')

    # read data
    pattern = '3(\d){4}'
    npys = filelist('/home/dkumar/Data/np_arrays', pattern)
    Nsteps = len(npys)
    dset = grp.create_dataset('imgs', (Nsteps, *detector.shape), 'f')

    # turn the crank
    t0 = time.time()
    for i, npy in enumerate(npys):
        pts = load_npy(npy, center=np.array([8, 8, 8]), scale=scale)
        img = mdscatter.dft(pts, qvals, beam_rad)
        img = np.abs(img)**2
        img = np.reshape(img, detector.shape)
        dset[i, :, :] = np.reshape(img, detector.shape)
    t1 = time.time() - t0
    print('time taken = %f\n' % t1)
    h5f.close()