def test_nothing_is_correct():
        norec, nomean = get_sightings(filename, 'NotPresent')
        assert norec == 0, 'Biosignature missing should return zero records'
        assert nomean == 0, 'Biosignature missing should return zero mean'
Esempio n. 2
0
def test_animal_not_present():
    animrec, animmean = get_sightings(filename, 'NotPresent')
    assert animrec == 0, 'Animal missing should return zero records'
    assert animmean == 0, 'Animal missing should return zero mean'
Esempio n. 3
0
def test_owl_is_correct():
	owlrec, owlmean = get_sightings(filename, 'Owl')
	# assert test_statement message_if_test_is_false
	assert owlrec == 2, 'Number of records for owl is wrong'
	assert owlmean == 17#, 'Mean sightings for owl is wrong'
def test_arg_capitalization_wrong():
    owlrec, owlmean = get_sightings(filename, 'oWl')
    assert owlrec == 2, 'Number of records for owl is wrong'
    assert owlmean == 17, 'Mean sightings for owl is wrong'
def test_pig_is_correct():
	pigrec, pigmean = get_sightings(filename, 'Pig')
	assert pigrec == 1, 'Number of records for Pig is wrong'
	assert pigmean == 4, 'Mean sightings for Pig is wrong'
Esempio n. 6
0
def test_water_is_correct():
	watrec, watmean = get_sightings(filename,'water')
	assert watrec==2, 'Number of records for water is wrong'
	assert watmean==17, 'Mean for water is wrong'
def test_owl_is_correct():
    owlrec, owlmean = get_sightings(filename, 'Owl')
    assert owlrec == 2, 'Number of records for owl is wrong'
    assert owlmean == 17, 'Mean sightings for owl is wrong'
Esempio n. 8
0
def test_bay_is_correct():
    bayrec, baymean = get_sightings(filename, 'Nazan Bay')
    assert bayrec == 2, 'Number of records for Nazan Bay is wrong'
    assert baymean == 17, 'Mean Tidal wave sightings for owl is wrong'
Esempio n. 9
0
def test_fireisland_is_correct():
    oxrec, oxmean = get_sightings(filename, 'Fire Island')
    assert oxrec == 2, 'Number of records for Fire Island is wrong'
    assert oxmean == 25.5, 'Mean Tidal wave sightings for Fire Island is wrong'
Esempio n. 10
0
def test_clay_is_corrrect():
    clayrec,claymean = get_sightings(filename,"Clay")
    assert clayrec==2, "number of records for clay is wrong"
    assert claymean==25.5, "clay mean is wrong"
Esempio n. 11
0
figFILE   = os.path.join(outDIR,'spp_fig.png')

# Set names of species to count
spp_names = ['Fox', 'Wolf', 'Grizzly', 'Wolverine']


# ------------------------------------------------------------------------
# Perform analysis 
# ------------------------------------------------------------------------

# Declare empty list to hold counts of records
spp_recs = []

# Get total number of records for each species
for spp in spp_names:
    totalrecs, meancount = get_sightings(dataFILE, spp)
    spp_recs.append(totalrecs)

print('spp_names')
print( spp_names )

print('spp_recs')
print( spp_recs )

print('[spp_names, spp_recs]')
print( [spp_names, spp_recs] )

print('np.transpose([spp_names, spp_recs])')
print( np.transpose([spp_names, spp_recs]) )

# ------------------------------------------------------------------------
Esempio n. 12
0
def test_water_is_corrrect():
    watrec,watmean = get_sightings(filename,"Water")
    assert watrec==2, "number of records for water is wrong"
    assert watmean==17, "water mean is wrong"
Esempio n. 13
0
def test_not_present():
    norec,nomean = get_sightings(filename, "not present")
    assert norec==0, "Biosig not present"
    assert nomean ==0, "mean is not present"
Esempio n. 14
0
def test_not_present():
    norec, nomean = get_sightings(filename, 'Not Present')
    assert norec == 0, 'Biosigniture not present'
    assert nomean==0, 'Mean is not present'
Esempio n. 15
0
def test_anonymouse_is_correct():
	anirec, animean = get_sightings(filename, 'NotPresent')
	assert anirec == 0, 'Number of anonymous records is wrong'
	assert animean == 0 , 'Mean for anonymous animal rec is wrong'
Esempio n. 16
0
def test_station_not_present():
    statrec, statmean = get_sightings(filename, 'NotPresent')
    print statrec, statmmean
    assert statrec == 0, 'Station`s data missing should return zero records'
    assert statmean == 0, 'Station`s data missing should return zero mean'
Esempio n. 17
0
def test_Mouse_is_correct():
	mouserec, mousemean = get_sightings(filename, 'Mouse')
	assert mouserec == 12, 'Mouse number wrong'
	assert mousemean == 1, 'Mouse mean wrong'
Esempio n. 18
0
def test_arg_capitalization_wrong():
    bayrec, baymean = get_sightings(filename, 'Nazan bAy')
    assert bayrec == 2, 'Number of records for Nazan Bay is wrong'
    assert baymean == 17, 'Mean Tidal wave sightings for Nazan Bay is wrong'
Esempio n. 19
0
# ---
data_path = '../data/'
results_path = '../results/'

data_name = 'sightings_tab_lg.csv'
table_name = 'spp_table.csv'
fig_name = 'spp_fig.png'

spp_names = ['Fox', 'Wolf', 'Wolverine']

#  Generate reesutls

spp_recs = []

for spp in spp_names:
	n_records, mu_sightings = ms.get_sightings(data_path + data_name, spp)
	spp_recs.append(n_records)
	
print spp_names
print spp_recs


#  Save table
table = pd.DataFrame({'species': spp_names, 'recs': spp_recs})
table.to_csv(results_path + table_name, index=False)

#  Save figure 
fig, ax = plt.subplots(1,1)
ax.bar([0,1,2], spp_recs)
ax.set_xticklabels(spp_names)
fig.savefig(results_path + fig_name)
Esempio n. 20
0
fig_name = 'spp_fig.png'

# Set names of species to count
spp_names = ['Fox', 'Wolf', 'Grizzly', 'Wolverine']


# ------------------------------------------------------------------------
# Perform analysis 
# ------------------------------------------------------------------------

# Declare empty list to hold counts of records
spp_recs = []

# Get total number of records for each species
for spp in spp_names:
    totalrecs, meancount = get_sightings(data_dir + data_name, spp)
    spp_recs.append(totalrecs)

print spp_names
print spp_recs

# ------------------------------------------------------------------------
# Save results as table 
# ------------------------------------------------------------------------

# Put two lists into a pandas DataFrame
table = pd.DataFrame(np.array(zip(spp_names, spp_recs),
                 dtype=[('species', 'S12'), ('recs', int)]))

# Save DataFrame as csv
table.to_csv(results_dir + table_name, index=False)
def test_muskox_is_correct():
    oxrec, oxmean = get_sightings(filename, 'Muskox')
    assert oxrec == 2, 'Number of records for muskox is wrong'
    assert oxmean == 25.5, 'Mean sightings for muskox is wrong'
def test_Muskox_is_correct():
    muskrec, muskmean = get_sightings(filename, 'Muskox')
    assert muskrec == 2, 'Number of records for Muskox is wrong'
    assert muskmean == 25.5, 'Mean sightings for Muskox is wrong'
def test_lion_is_correct():
        lionrec, lionmean = get_sightings(filename, 'Lion')
        assert lionrec == 2, 'Number of records for Lion is wrong'
        assert lionmean == 25.5, 'Mean sightings for Lion is wrong'
Esempio n. 24
0
def test_not_present():
	norec,nomean = get_sightings(file,'Not present')
	assert norec == 0, 'Biosignature not present, has zero recs.'
	assert nomean == 0, 'Mean is not present for missing Biosig.'
def test_cow_is_correct():
        cowrec, cowmean = get_sightings(filename, 'Cow')
        assert cowrec == 2, 'Number of records for Cow is wrong'
        assert cowmean == 17, 'Mean sightings for Cow is wrong'
Esempio n. 26
0
def test_water():
	watrec,watmean = get_sightings(file,'Water')
	assert watrec == 2, 'Number of records for water is wrong.'
	assert watmean == 17, 'Mean for water is wrong'
Esempio n. 27
0
def test_animal_case():
    animrec, animmean = get_sightings(filename, 'oWL')
    assert animrec == 2
    assert animmean == 17
Esempio n. 28
0
def test_Clay():
        clayrec,claymean = get_sightings(file,'Clay')
        assert clayrec == 2, 'Number of records for clay is wrong.'
        assert claymean == 25.5, 'Mean for clay is wrong'
Esempio n. 29
0
def test_muskox_is_correct():
	muskoxrec, muskoxmean = get_sightings(filename, 'Muskox')
	# assert test_statement message_if_test_is_false
	assert muskoxrec == 2, 'Number of records for muskox is wrong'
	assert muskoxmean == 25.5#, 'Mean sightings for muskox is wrong'
Esempio n. 30
0
def test_owl_is_correct():
    owlrec, owlmean = get_sightings(filename, 'Owl')
    assert owlrec == 2, 'Number of records for owl is wrong'
    assert owlmean == 17, 'Mean sightings for owl is wrong'
Esempio n. 31
0
def test_not_present():
    notrec, notmean = get_sightings(filename,'Not present')
    assert notrec==0, "Number of records for Not present is null"
    assert notmean==0, 'Mean for Not present is null'
Esempio n. 32
0
def test_muskox_is_correct():
    oxrec, oxmean = get_sightings(filename, 'Muskox')
    assert oxrec == 2, 'Number of records for muskox is wrong'
    assert oxmean == 25.5, 'Mean sightings for muskox is wrong'
Esempio n. 33
0
def test_pig_is_correct():
	pigrec, pigmean = get_sightings(filename, 'Pig')   #See mean_sightings for explaination of how this works
	assert pigrec == 1, 'Number of records for Pig is wrong'
	assert pigmean == 4, 'Mean sightings for pig is wrong'
Esempio n. 34
0
def test_animal_not_present():
    animrec, animmean = get_sightings(filename, 'NotPresent')
    print animrec, animmean
    assert animrec == 0, 'Animal missing should return zero records'
    assert animmean == 0, 'Animal missing should return zero mean'
Esempio n. 35
0
def test_not_presemt():
	norec, nomean = get_sightings(filename, 'Not Present')
	assert norec==0, 'Biosignature not present has zero recs'
	assert nomean==0, 'Mean is not present for missing biosig'
Esempio n. 36
0
def test_arg_capitalization_wrong():
    owlrec, owlmean = get_sightings(filename, 'oWl')
    assert owlrec == 2, 'Number of records for owl is wrong'
    assert owlmean == 17, 'Mean sightings for owl is wrong'
Esempio n. 37
0
def test_clay_is_correct():
        clayrec, claymean = get_sightings(filename,'Clay')
        assert clayrec==2, 'Number of records for clay is wrong'
        assert claymean==25.5, 'Mean for clay is wrong'
Esempio n. 38
0
fig_name = 'spp_fig.png'

# Set names of species to count
spp_names = ['Fox', 'Wolf', 'Grizzly', 'Wolverine']


# ---------------------------------------------------------------------------
# Perform analysis 
# ---------------------------------------------------------------------------

# Declare empty list to hold counts of records
spp_recs = []

# Get total number of records for each species
for spp in spp_names:
    totalrecs, meancount = get_sightings(data_dir + data_name, spp)
    spp_recs.append(totalrecs)

print spp_names
print spp_recs

# ---------------------------------------------------------------------------
# Save results as table 
# ---------------------------------------------------------------------------

# Put two lists into a recarray table
table = np.array(zip(spp_names, spp_recs),
                 dtype=[('species', 'S12'), ('recs', int)])

# Save recarray as csv
ml.rec2csv(table, results_dir + table_name)