Esempio n. 1
0
    def test_GradientMinimization_RatesVoltages(self):
        """Solve for firing rates & voltages with specialized subclass"""

        system = no_subpopulation()

        solver = MFSolver.rates_voltages(system, solver="mse", maxiter=1)
        sol1 = solver.run()

        solver = MFSolver.rates_voltages(system, solver="gradient", maxiter=1)
        sol2 = solver.run()

        np.testing.assert_array_almost_equal(sol1.state, sol2.state, 5)
Esempio n. 2
0
    def test_simulation_theory(self):
        reset_brian2()

        t = 1000 * ms
        dt = 0.01 * ms
        defaultclock.dt = dt

        pop = MFLinearPopulation(
            100, {
                PP.GM: 25. * nS,
                PP.CM: 0.5 * nF,
                PP.VL: -70. * mV,
                PP.VTHR: -50. * mV,
                PP.VRES: -55. * mV,
                PP.TAU_RP: 2. * ms
            })
        pop.rate = 1 * Hz

        noise = MFStaticInput(1000, 1 * Hz, pop, {
            IP.GM: 2 * nS,
            IP.VREV: 0 * volt,
            IP.TAU: 2. * ms,
        })

        rec = MFLinearInput(pop, pop, {
            IP.GM: 0.973 / 100 * nS,
            IP.VREV: -70 * volt,
            IP.TAU: 10. * ms,
        })

        system = MFSystem(pop)

        solver = MFSolver.rates_voltages(system, solver='mse', maxiter=1)
        sol = solver.run()
        theory = sol.state[0]

        rate = PopulationRateMonitor(pop.brian2)

        net = system.collect_brian2_network(rate)
        net.run(t)

        #brian2_introspect(net, globals())

        stable_t = int(t / dt * 0.1)
        isolated = np.array(rate.rate)[stable_t:-stable_t]
        print(isolated.mean())

        if False:
            plt.plot(rate.t / ms, rate.smooth_rate(width=25 * ms) / Hz)
            plt.plot(np.ones(10000) * isolated.mean(), label='simulation mean')
            plt.plot(np.ones(10000) * theory, label='theory mean')
            plt.ylabel('Population rate (Hz) per 100')
            plt.xlabel('Simulation time (ms)')
            plt.title('Poisson noise 5 Hz per 1000')
            plt.legend()
            plt.show()
Esempio n. 3
0
    def test_MFSolver(self):
        """Solve for firing rates & voltages with explicit function"""
        up, down, inter = self.system.populations

        up.rate = 1 * Hz
        down.rate = 4 * Hz
        inter.rate = 12 * Hz

        solver = MFSolver.rates_voltages(self.system, solver='simplex', maxiter=1)
        sol = solver.run()
        print(sol)
Esempio n. 4
0
    def test_MFSolver_RatesVoltages(self):
        """Solve for firing rates & voltages with specialized subclass"""

        solver = MFSolver.rates_voltages(self.system)
        r1 = solver.run()

        # take old implementation and compare
        state = self.test_MFState()
        solver = MFSolver(state)
        r2 = solver.run()

        for key in [c.name for c in r1.constraints]:
            assert r1[key] == r2[key]
Esempio n. 5
0
    def test_simulation_theory(self):
        reset_brian2()

        t = 3000 * ms
        dt = 0.01 * ms
        n = 100

        poisson = MFPoissonPopulation(n, n * 10 * Hz)
        pop = MFLinearPopulation(
            n, {
                PP.GM: 10 * nsiemens,
                PP.VL: 0 * mV,
                PP.CM: 5 * nfarad,
                PP.VTHR: 0 * mV,
                PP.VRES: 0 * mV,
                PP.TAU_RP: 15 * ms
            })
        syn = MFLinearNMDAInput(
            poisson, pop, {
                IP.GM: 10 * nsiemens,
                IP.VREV: 0 * mV,
                IP.TAU: 20 * ms,
                IP.TAU_NMDA: 30 * ms,
                IP.BETA: 1,
                IP.GAMMA: 1,
            })

        system = MFSystem(pop, poisson)

        solver = MFSolver.rates_voltages(system, solver='mse')
        solver.run()
        theory = syn.g_dyn() / syn.origin.n

        m = StateMonitor(syn.brian2, syn.post_variable_name, record=range(100))
        defaultclock.dt = dt
        net = system.collect_brian2_network(m)
        net.run(t)

        stable_t = int(t / dt * 0.1)
        simulation = m.__getattr__(syn.post_variable_name)[:, stable_t:]
        simulation_mean = np.mean(simulation)
        print(simulation)

        assert np.isclose(theory, simulation_mean, rtol=0.5, atol=0.5)
Esempio n. 6
0
def with_rate(rate):
    reset_brian2()

    pop = MFLinearPopulation(n_pop, {
        PP.GM: 25. * nS,
        PP.CM: 0.5 * nF,
        PP.VL: -70. * mV,
        PP.VTHR: -50. * mV,
        PP.VRES: -55. * mV,
        PP.TAU_RP: 2. * ms
    })
    pop.rate = 10 * Hz

    MFStaticInput(n_noise, rate * Hz, pop, {
        IP.GM: 2.08 * nS,
        IP.VREV: 0 * volt,
        IP.TAU: 1.5 * ms,
    })

    system = MFSystem(pop)

    rate = PopulationRateMonitor(pop.brian2)
    net = system.collect_brian2_network(rate)
    net.run(t)

    margin = round(0.5 * second / defaultclock.dt)
    stable = rate.smooth_rate(width=20 * ms)[margin:-margin]

    mean_simu = np.mean(stable)
    std_simu = np.reshape(stable, (samples, -1)).mean(axis=1).std() / np.sqrt(samples) * 1.96
    print(std_simu)

    solver = MFSolver.rates_voltages(system, solver='simplex', maxiter=1)
    sol = solver.run()
    mean_theo = sol.state[0]

    return [mean_theo, mean_simu, std_simu]
Esempio n. 7
0
        def for_rate(rate):
            reset_brian2()

            pop = MFLinearPopulation(
                n_pop, {
                    PP.GM: 25. * nS,
                    PP.CM: 0.5 * nF,
                    PP.VL: -70. * mV,
                    PP.VTHR: -50. * mV,
                    PP.VRES: -55. * mV,
                    PP.TAU_RP: 2. * ms
                })
            pop.rate = 1 * Hz

            MFStaticInput(n_noise, rate * Hz, pop, {
                IP.GM: 2 * nS,
                IP.VREV: 0 * volt,
                IP.TAU: 2. * ms,
            })

            t = 500 * ms
            dt = 0.1 * ms

            system = MFSystem(pop)
            rate = PopulationRateMonitor(pop.brian2)
            net = system.collect_brian2_network(rate)
            net.run(t)
            stable_t = int(t / dt * 0.1)
            isolated = np.array(rate.rate)[stable_t:-stable_t]
            sim = np.mean(isolated)

            solver = MFSolver.rates_voltages(system,
                                             solver='simplex',
                                             maxiter=1)
            sol = solver.run()
            return [sol.state[0], sim]
Esempio n. 8
0
        def for_rate(rate):
            pop = MFLinearPopulation(100, {
                PP.GM: 25. * nS,
                PP.CM: 0.5 * nF,
                PP.VL: -70. * mV,
                PP.VTHR: -50. * mV,
                PP.VRES: -55. * mV,
                PP.TAU_RP: 2. * ms
            })
            pop.rate = 10 * Hz

            noise = MFStaticInput(1000, rate * Hz, pop, {
                IP.GM: 2 * nS,
                IP.VREV: 0 * volt,
                IP.TAU: 2. * ms,
            })
            pop.add_noise(noise)

            system = MFSystem(pop)

            solver = MFSolver.rates_voltages(system, solver='mse', maxiter=1)
            print(solver.state)
            sol = solver.run()
            return sol.state[0]
Esempio n. 9
0
    def test_simulation_theory(self):
        reset_brian2()

        t = 3000 * ms
        dt = 0.01 * ms
        n = 100

        alpha = 0.5

        poisson = MFPoissonPopulation(n, n * 10 * Hz)
        pop = MFLinearPopulation(
            n, {
                PP.GM: 10 * nsiemens,
                PP.VL: 0 * mV,
                PP.CM: 5 * nfarad,
                PP.VTHR: 0 * mV,
                PP.VRES: 0 * mV,
                PP.TAU_RP: 15 * ms
            })
        syn = MFLinear3TSInput(
            poisson, pop, {
                IP.GM: 10 * nsiemens,
                IP.VREV: 0 * mvolt,
                IP.TAU: 0 * ms,
                IP.TAU_RISE: 2 * ms,
                IP.TAU_D1: 20 * ms,
                IP.TAU_D2: 30 * ms,
                IP.ALPHA: alpha
            })

        system = MFSystem(pop, poisson)

        solver = MFSolver.rates_voltages(system, solver='mse')
        solver.run()
        theory = syn.g_dyn() / syn.origin.n

        print(syn.brian2)

        m1 = StateMonitor(syn.brian2,
                          syn.post_variable_name[0],
                          record=range(100))
        m2 = StateMonitor(syn.brian2,
                          syn.post_variable_name[1],
                          record=range(100))
        m3 = StateMonitor(syn.brian2,
                          syn.post_variable_name[2],
                          record=range(100))
        m4 = StateMonitor(syn.brian2,
                          syn.post_variable_name[3],
                          record=range(100))
        defaultclock.dt = dt

        net = system.collect_brian2_network(m1, m2, m3, m4)
        net.run(t)

        stable_t = int(t / dt * 0.1)
        simulation_1 = m1.__getattr__(syn.post_variable_name[0])[:, stable_t:]
        simulation_mean_1 = np.mean(simulation_1)
        simulation_2 = m2.__getattr__(syn.post_variable_name[1])[:, stable_t:]
        simulation_mean_2 = np.mean(simulation_2)
        simulation_3 = m3.__getattr__(syn.post_variable_name[2])[:, stable_t:]
        simulation_mean_3 = np.mean(simulation_3)
        simulation_4 = m4.__getattr__(syn.post_variable_name[3])[:, stable_t:]
        simulation_mean_4 = np.mean(simulation_4)

        simulation_mean = alpha * simulation_mean_1 + (
            1 - alpha) * simulation_mean_2 + -alpha * simulation_mean_3 - (
                1 - alpha) * simulation_mean_4

        assert np.isclose(theory, simulation_mean, rtol=0.5, atol=0.5)
Esempio n. 10
0
rm_E_sel = modelling.brian2_rate_monitors(pop_e_sel)
rm_E = modelling.brian2_rate_monitors(pop_e)
rm_I = modelling.brian2_rate_monitors(pop_i)

all_rm = rm_E + rm_I + rm_E_sel

# simulate, can be long >120s
system = MFSystem(pop_e, *pop_e_sel, pop_i, name="Brunel Wang 2001")

pop_e.rate = 1 * Hz
pop_i.rate = 9 * Hz
for p in pop_e_sel:
    p.rate = 1 * Hz
pop_e_sel[0].rate = 30 * Hz

solver = MFSolver.rates_voltages(system, solver='simplex', maxiter=1)
#sol = solver.run()
#print(sol)

#system.graph().view(cleanup=True)

# at 1s, select population 1
C_selection = int(f * C_ext)
rate_selection = 50 * Hz
stimuli1 = TimedArray(np.r_[np.zeros(40),
                            np.ones(2),
                            np.zeros(1000)],
                      dt=25 * ms)
input1 = PoissonInput(pop_e_sel[0].brian2, 's_noise_E_sel_0', C_selection,
                      rate_selection, 'stimuli1(t)')