import pymc import numpy as np import pylab as pl from measure_tau import mcmc_sampler_dict, tauoneone, tautwotwo, savepath, domillion, abundance, opr, savefig, trace_data_path from mcmc_tools import docontours_multi, save_traces from agpy import pymc_plotting import pymc_tools print "Beginning Lognormal parameter estimation using abundance=", abundance, ' opr= ', opr mc_simple = pymc.MCMC( mcmc_sampler_dict(tauoneone=tauoneone, tautwotwo=tautwotwo)) graph_lognormal_simple = pymc.graph.graph(mc_simple) graph_lognormal_simple.write_pdf(savepath + "mc_lognormal_simple_graph.pdf") graph_lognormal_simple.write_png(savepath + "mc_lognormal_simple_graph.png") d = mcmc_sampler_dict( tauoneone=tauoneone, tautwotwo=tautwotwo, truncate_at_50sigma=True) d['b'] = pymc.Uniform(name='b', value=0.5, lower=0.3, upper=1, observed=False) @pymc.deterministic(plot=True, trace=True) def mach(sigma=d['sigma'], b=d['b']): return np.sqrt((np.exp(sigma**2) - 1) / b**2) d['mach'] = mach d['mach_observed'] = pymc.Normal( name='mach_observed', mu=mach, tau=1. / 1.5**2, value=5.1, observed=True)
trace_data_path, ) from mcmc_tools import docontours_multi, save_traces from agpy import pymc_plotting import pymc_tools import hopkins_pdf if "abundance" not in locals(): from measure_tau import abundance if "opr" not in locals(): from measure_tau import opr print "Beginning Hopkins parameter estimation using abundance=", abundance, " opr=", opr # Hopkins - NO Mach number restrictions d = mcmc_sampler_dict(tauoneone=tauoneone_hopkins, tautwotwo=tautwotwo_hopkins) mc_hopkins_simple = pymc.MCMC(d) graph_hopkins_simple = pymc.graph.graph(mc_hopkins_simple) graph_hopkins_simple.write_pdf(savepath + "mc_hopkins_simple_graph.pdf") graph_hopkins_simple.write_png(savepath + "mc_hopkins_simple_graph.png") # Hopkins - with Mach number restrictions d = mcmc_sampler_dict(tauoneone=tauoneone_hopkins, tautwotwo=tautwotwo_hopkins) def Tval(sigma): return hopkins_pdf.T_of_sigma(sigma, logform=True) d["Tval"] = pymc.Deterministic(name="Tval", eval=Tval, parents={"sigma": d["sigma"]}, doc="Intermittency parameter T")