Esempio n. 1
0
def get_player(directory=None,
               files_list=None,
               landmark_ids=None,
               viz=False,
               task="play",
               file_type="brain",
               saveGif=False,
               saveVideo=False,
               multiscale=True,
               history_length=20,
               agents=1,
               logger=None):
    env = MedicalPlayer(directory=directory,
                        screen_dims=IMAGE_SIZE,
                        viz=viz,
                        saveGif=saveGif,
                        saveVideo=saveVideo,
                        task=task,
                        files_list=files_list,
                        file_type=file_type,
                        landmark_ids=landmark_ids,
                        history_length=history_length,
                        multiscale=multiscale,
                        agents=agents,
                        logger=logger)
    if task != "train":
        # in training, env will be decorated by ExpReplay, and history
        # is taken care of in expreplay buffer
        # otherwise, FrameStack modifies self.step to save observations into a
        # queue
        env = FrameStack(env, FRAME_HISTORY, agents)
    return env
Esempio n. 2
0
def get_player(directory=None,
               files_list=None,
               viz=False,
               task='play',
               saveGif=False,
               saveVideo=False,
               agents=2,
               reward_strategy=1):
    # in atari paper, max_num_frames = 30000
    env = MedicalPlayer(directory=directory,
                        screen_dims=IMAGE_SIZE,
                        viz=viz,
                        saveGif=saveGif,
                        saveVideo=saveVideo,
                        task=task,
                        files_list=files_list,
                        agents=agents,
                        max_num_frames=1500,
                        reward_strategy=reward_strategy)
    if (task != 'train'):
        # in training, env will be decorated by ExpReplay, and history
        # is taken care of in expreplay buffer
        # otherwise, FrameStack modifies self.step to save observations into a queue
        env = FrameStack(env, FRAME_HISTORY, agents=agents)
    return env
Esempio n. 3
0
def get_player(
    directory=None,
    files_list=None,
    viz=False,
    task="play",
    saveGif=False,
    saveVideo=False,
    agents=2,
    fiducials=None,
    infDir="../inference",
):
    # in atari paper, max_num_frames = 30000
    env = MedicalPlayer(
        directory=directory,
        screen_dims=IMAGE_SIZE,
        viz=viz,
        saveGif=saveGif,
        saveVideo=saveVideo,
        task=task,
        files_list=files_list,
        agents=agents,
        max_num_frames=1500,
        fiducials=fiducials,
        infDir=infDir,
    )
    if task != "train":
        # in training, env will be decorated by ExpReplay, and history
        # is taken care of in expreplay buffer
        # otherwise, FrameStack modifies self.step to save observations into a queue
        env = FrameStack(env, FRAME_HISTORY, agents=agents)
    return env