def get_player(directory=None, files_list=None, landmark_ids=None, viz=False, task="play", file_type="brain", saveGif=False, saveVideo=False, multiscale=True, history_length=20, agents=1, logger=None): env = MedicalPlayer(directory=directory, screen_dims=IMAGE_SIZE, viz=viz, saveGif=saveGif, saveVideo=saveVideo, task=task, files_list=files_list, file_type=file_type, landmark_ids=landmark_ids, history_length=history_length, multiscale=multiscale, agents=agents, logger=logger) if task != "train": # in training, env will be decorated by ExpReplay, and history # is taken care of in expreplay buffer # otherwise, FrameStack modifies self.step to save observations into a # queue env = FrameStack(env, FRAME_HISTORY, agents) return env
def get_player(directory=None, files_list=None, viz=False, task='play', saveGif=False, saveVideo=False, agents=2, reward_strategy=1): # in atari paper, max_num_frames = 30000 env = MedicalPlayer(directory=directory, screen_dims=IMAGE_SIZE, viz=viz, saveGif=saveGif, saveVideo=saveVideo, task=task, files_list=files_list, agents=agents, max_num_frames=1500, reward_strategy=reward_strategy) if (task != 'train'): # in training, env will be decorated by ExpReplay, and history # is taken care of in expreplay buffer # otherwise, FrameStack modifies self.step to save observations into a queue env = FrameStack(env, FRAME_HISTORY, agents=agents) return env
def get_player( directory=None, files_list=None, viz=False, task="play", saveGif=False, saveVideo=False, agents=2, fiducials=None, infDir="../inference", ): # in atari paper, max_num_frames = 30000 env = MedicalPlayer( directory=directory, screen_dims=IMAGE_SIZE, viz=viz, saveGif=saveGif, saveVideo=saveVideo, task=task, files_list=files_list, agents=agents, max_num_frames=1500, fiducials=fiducials, infDir=infDir, ) if task != "train": # in training, env will be decorated by ExpReplay, and history # is taken care of in expreplay buffer # otherwise, FrameStack modifies self.step to save observations into a queue env = FrameStack(env, FRAME_HISTORY, agents=agents) return env